

The new INFN Data Center at Bologna Tecnopolo

L.dell'Agnello, T.Boccali, A.Cherici, S.Zani, L.Scarponi, V.Sapunenko, D.Cesini On behalf of the CNAF-Reloaded team

INFN-CCR Workshop 24 May 2022 - Paestum

A brand new CNAF datacenter

- Renew infrastructures to be ready for the HL-LHC era
 - up to ~ 2035 and beyond
- Use more compact computing
 - from today's ~ 20 kW/rack to 80 or more
 - Integration with CINECA-Leonardo
- Lower the PUE (power usage effectiveness)
 - be greener
 - Targeting 1.08-1.10
- Extend and expand networking for a future-proof infrastructure

The opportunities

- In **2017**, Bologna won a bid to host the "European Centre for Medium-Range Weather Forecasts"
- The Emilia Romagna region decided to repurpose the "Manifattura Tabacchi" area to host a technology district, hosting ECMWF and more

How it will be

The opportunities...

- **Summer 2019**: Italy (CINECA, INFN, SISSA) won a bid for one of the three EuroHPC JU pre-exascale system
- Leonardo (250 PFLOPS), to be deployed at the Tecnopolo in the next months
 - Intel CPUs (good for us!) and Nvidia GPU
 - ~ 7000 last generation Xeon CPUs (~10 MHS06)
 - ~14000 Nvidia A200
 - Tight integration with CNAF storage (~2 Tbps)
- CINECA/INFN have a long collaboration history
 - A fraction of the current CPU power of CNAF is indeed hosted by CINECA

- CINECA and INFN already collaborate in the direction of enabling HPC systems for HEP
 - 1 PRACE grant (2019) demonstrated the feasibility of transparent LHC computing on the Marconi system with more than 90 Million Core Hours delivered
 - Marconi100 is the first IBM/Power system validated for physics utilization at LHC (with CMS)

What can the Tecnopolo host?

NFN

Each of the 6 "botti" (barrels) is ~5000m² of usable IT space

Same architect and design of the "Sala Nervi" in the Vatican

The INFN+CINECA project

14 September 2021: new ECMWF data centre opens in Bologna, Italy

- The CINECA ("C2") and INFN ("B5") barrels are expected to be ready by
 - ~mid 2022 (CINECA)
 - ~First half 2023 (INFN)
- Two phases expected
 - Phase-1 (2023-2025): Leonardo + T1-CNAF relocated. Total 10+3MW
 - Phase-2 (2025+): infrastructure up to 24 MW (10MW INFN) ready for post-exascale and for HL_LHC

CINECA AND INFN (C2 AND B5)

- Even very pessimistic (unrealistic) HL-LHC extrapolations to 3x over flat budget would fit in B5, using the expansion area
- The CPU area will be initially unused
- But can later host up to 3MW of CPUs via 42 DLC high density racks
 - And more in the expansion areas, if needed

Data Center Layout

Electrical distribution

- Phase 1: Hall B5 3 MW
 - under UPS and diesel generator
 - distribution with 3 + 1 redundancy
 - using 4 UPS
 - 1 MW each
- Low Density: 24 powerline 1000A each
- High Density: 6 powerline 1000A each
- Phase 2 (2025+) → 10MW

A "distributed" datacenter

- Multiple "heads"
 - CNAF Tecnopole
 - Cineca Leonardo
 - INFN-CLOUD
 - Data-lake(s)
 - DCI with INFN sites (IDDLS)
 - DCI with CERN
 - ICSC (centro nazionale)?
 - Legacy CNAF during migration in the initial stage
 - B.Pichat CNAF
 - CNAF WN@CINECA
 - Business continuity
 - EPIC
 - National Services

Network layout

Growth profile of installed resources

YEAR	CPU	DISK	TAPE
	kHS06	PB-N	PB
2023	820	78	172
2024	990	94	206
2025	1320	110	247

- To avoid new CPU acquisition and using Leonardo to fullfill the pledges 2023-2025:
 - 2023 11% (165 nodes) of Leonardo GP
 - 2024 20% (300 nodes)
 - 2025 36% (540 nodes)
- CINECA agreed for 2023, 2024
 - Not possible for 2025
 - We will exploit the farm HD area, DLC CPU

11% = 165 nodes Leonardo GP (~ 2 rack) 20% = 300 nodes Leonardo GP (~ 4 rack)

How to connect Leonardo

- Open issue:
 - Leonardo nodes connected via IB
 - CNAF connected via ETH
- The plan is to use 2 IB-Ethernet gateways (Mellanox Skyway)
 - aggregated bandwidth 1.6 Tbps
 - Testing at scale needed

- The skyways
 - 8 connectx-6VPI dual head NICs
 - One IB, one Ethernet
 - Nvidia guarantees 8x100Gbps on the eth side
 - Could reach 200Gbps but currently there are limitations on the PCI bus
 - Can be configured as L3 switches with 8 ports at 100Gbs in LACP load sharing
 - VLAN tagging is not possible
 - as other functions typical of Ethernet switches
 - Can map an IB fabric to 1 IP subnet
 - Max MTU on the Eth side is 4092
 - GPFS interoperability?!?
 - Does not support IPv6
 - But should be fixed in a near future
 - 2 Skyways can be configured as 2 distinct switches or as redundant 16 ethernet ports system

Farm + Cloud integration

- Few access points for several different infrastructures
 - Cloud@CNAF
 - Cloud@INFN
 - Local HTC farm
 - Local HPC farms
 - CNAF WN@CINECA
 - Leonardo partitions
- Based on
 - HTCondor
 - SLURM
 - HTC-SLURM connectors
 - INDIGO PaaS + Openstack

DCIs - Data Center Interconnect

Disk server

26

Groove G30 @BA

Arista

Disk server

N x100gbs

N x100gbs

DCI CERN-CNAF

R&D proposal to implement a Terabit DCI between CERN and CNAF

Packet/optical transponder inside the datacenters interconnected by a Open Line System transport provided by GARR+GEANT

Other

sites

Disk server

Other

sites

Live Migration

- CPU
 - Transparent to users
 - Maintain WNs@CINECA (420kHS06)
 - Move legacy from current site to Tecnopolo (120 kHS06)
 - Start using Leonardo
- Disk
 - Install 30PB at Tecnopolo
 - Move data on the new storage
 - Move legacy hw to Tecnopolo (50-55PB)

• TAPE

- Move one library at a time
 - Cannot read from the library that is being moved
 - Write on buffer will be transparent

ICSC and the Tecnopolo

- Headquarters at the Tecnopolo
- 34 Research institutions and Universities
- 15 major Italian companies
- Over 1500 researchers committed
- Deployment of a productionlevel Quantum system (emulator or real hardware, tbd)
- Deploy and operate the resources via a national level **Datalake**

UPMC

Terha

Conclusion

- CNAF is moving to a new location
 - future-proof due to high expansion possibilities
 - ready for the requirements of the next generation experiments
 - not only LHC and not only (astro) physics
- One datacenter composed of distributed facilities
 - HTC, HPC, Cloud,
 - datalakes and ICSC infrastructures
 - Few user entrypoints
- Closer integration with the CINECA HPC facilities

But since I was curious, I asked: what can you actually do with these supercomputers?

Data Valley: il video racconto di Stefano Accorsi, entrato nel Tecnopolo

https://www.youtube.com/watch?v=96TfXHCWxf8

They answered: everything you can think of... and other things you can't even imagine.