
Lisa Zangrando
Federica Fanzago, Matteo Migliorini, Sergio Traldi Workshop sul Calcolo nell'INFN

May 23-27, 2022, Paestum

A Container-as-a-Service A Container-as-a-Service
solution for CloudVenetosolution for CloudVeneto

Kubernetes-as-Service
Kubernetes-as-a-Service (KaaS) is a cloud
model which enables end users to deploy
and manage Kubernetes clusters in on-
demand and self-service mode.

Examples: Amazon Elastic Kubernetes
Service (EKS), Google Kubernetes Engine
(GKE), and Azure Kubernetes Service
(AKS)

i

Containers-as-a-Service (CaaS) is a cloud
model that enables end users to execute
their containers on cloud resources.
Container engines, orchestration and the
underlying compute resources are
delivered to users as a service by the
cloud provider.

Examples: Amazon Elastic Container
Service (ECS), Amazon Fargate, and Azure
Container Instances (ACI).

Container-as-Service

Cloud models for running
containers on cloud

1

KaaS
The user accesses its private K8s cluster.
The deployment + configuration takes
time.
The provider makes just the cluster
provisioning, the user has to fully
administrate it.

CaaS
The user does not have a private cluster
so no administrative skills are required.
The provider fully manages the K8s
cluster including security and resource
provisioning (Serverless).

KaaS or CaaS?

2

KaaS
The efficiency in terms of resource
utilization degrades if the K8s clusters are
not used for long time.
The cost (time) spent to recreate a cluster
as needed is too much by the user.

CaaS
The provider fully manages the resource
provisioning according to the Serverless model.

Implementing Caas is more complex than KaaS.

KaaS vs CaaS efficiency

3

Our CaaS solution

A CaaS based on
Kubernetes and OpenStack
for CloudVeneto

It must include some
KaaS features such as
the ability to create
private logical clusters

4

Resources
Which ones? How to

manage them: pooling or
partitioning? How to fairly
assign them to the users?

Security
How to make strict

isolation? How to avoid
resource consumption

abuse?

Users
How to manage users

(access, groups)
How to share the same

cluster with multiple users?

Kubernetes
Does K8s interact with

OpenStack?

Several questions & issues

5

Software architecture where a single software instance (i.e. OpenStack) can
serve multiple, distinct user groups (tenants/projects/namespaces). It
supports customization for tenants (i.e. quotas) and allows strict isolation at
tenant and user level.

Openstack: hard multi-tenancy (strict isolation at tenant and user level)
Kubernetes: soft multi-tenancy (strict isolation at tenant level)

i Multi-tenancy

6

Quota of the blue tenant

Keystone token

Users of 4 tenants

The high level architecture of our CaaS

Kubernetes Control plane
(3 masters in HA)

without worker nodes

single sign-on

Users request K8s to create their
own WNs consuming the tenant's

quota in CloudVeneto.

7

Keystone token

The high level architecture of our CaaS

K8s Control Plane

u1

The user u1
requires 2 WNs

K8s asks the OS
to create 2 WMs
on behalf of u1 The WNs ask the

K8s to be
associated with

the cluster

The WMs are configured as WNs

8

The high level architecture of our CaaS

K8s Control Plane

u1

This is the logical K8s
cluster owned by user u1

9

The high level architecture of our CaaS

K8s Control Plane

u1
u2

The user u2
requires 3 WNs Two logical K8s clusters

owned by user u1 and u2
10

Users of 4 tenants

The high level architecture of our CaaS

K8s Control Plane

The user u2
requires 1 WN to

be shared
U1 and u2 share the same

WN required by u2

u1
u2

11

Kubernetes webhooks
The webhook is a powerful mechanism to extend the Kubernetes API-servers

capabilities with custom code for authentication, authorization and admission control.

authentication authorization admission

webhooks webhooks webhooks
etcd

i How to extend the K8s functionalities

Kubernetes operator
An operator is a K8s API that allows developers to extend the Kubernetes capabilities by

defining a new resource type (Custom Resource Definition) and implementing its manager.

12

Authentication webhook

authentication authorization admission

webhook webhook webhook

1

2

1

3

4UID=1, TID=2

validate
token

create namespace

Kubernetes by default doesn’t support the Keystone authN.
Added Keystone support by implementing a specific webhook.

1) A CloudVeneto user (blue tenant) accesses to K8s cluster by using its
Keystone credentials via kubectl
2) the K8s authN layer receives the request and asks to its webhook to
validate the Keystone token (since it is not able to do it by itself)
3) the authN webook validates the token and, if valid, extracts the info
(UserID and TenantID) about the user and its tenant
4) the webhook creates the namespace if not existing, and associate the
user to it.

Kubernetes
Control Plane

 Namespace blue

13

authentication authorization admission

webhook webhook webhook

1

6

5

7

8

UID=1, TID=2

Webhook implemented to extend the authZ level in order to achieve strict
isolation at the user level.

5) The authenticated user requires a pod deletion (or any verb: edit, get,
delete, create, update)
6) the authZ layer enforces the request against the RBAC (Role Based
Access Control) policies
7) if successfully, it asks its webhook to check the ownership of the pod (or
any other kind of resource)
8) the authZ webhook compares the match of the user info provided by
the authN webhook with the pod authN labels inserted by the admission
webhook (see next slide)

Pod UID=1, TID=2

Authorization webhook (multi-tenancy)

delete Pod check owner
Kubernetes
Control Plane

14

authentication authorization admission

webhook webhook webhook

1

10

9

UID=1, TID=2 Pod UID=1, TID=2, Affinity roles

create Pod add UID TID Roles

Admission webhook (multi-tenancy)
The admission webhook validates the user request and adds, if needed,
some extra metadata for internal things (e.g. scheduler)

9) The authenticated user requires a Pod creation (or any resource)
10) the authZ layer authorizes the request and asks the admission layer
to add the info (UserID and TenantID) about the user and its tenant
within the pod metadata (labels)
11) in case of creation of the Pod, the admission webhook also adds
some affinity & toleration roles to force the execution of the Pod only in
the WNs owned by the user (or shared)

Kubernetes
Control Plane

15

11

authentication authorization admission

webhook webhook webhook

1

2

1

UID=1, TID=2 OSN UID=1, TID=2, Bootstrap token

create osn add UID TID, BT

OpenStackNode operator
OpenStackNode is a new custom resources handled by its operator

1) The user requires a new WN (OpenStackNode)
2) Admission adds user info and creates Boostrap token (secret)
3) OSN operator receives the request from the OSN queue
4) ask to OpenStack the VM creation
5) the VM automatically configures itself as WN and requests to be
associated with the K8s cluster using the provided Boostrap token

OSN operator
Kubernetes
Control Plane

16
3

4

2

5

2

apiVersion: osnode.infn.it/v1
kind: OpenStackNode
metadata:
 name: my-node-01
spec:
 flavor: cloudveneto.large
 keyPair: Lisa
 policy: private
 provider: CloudVeneto
 securityGroups:
 - default

OpenStackNode custom resource

17

OpenStackNode example
$ kubectl apply -f my-node-01.yml

$ kubectl get osn my-node-01 -o wide
NAME PHASE OWNER POLICY PROVIDER VM FLAVOR VM STATUS VM IPV4 AGE
my-node-01 Building zangrand-at-infn.it private CloudVeneto cloudveneto.large BUILD 2m10s

$ kubectl get osn my-node-01 -o wide
NAME PHASE OWNER POLICY PROVIDER VM FLAVOR VM STATUS VM IPV4 AGE
my-node-01 Available zangrand-at-infn.it private CloudVeneto cloudveneto.large ACTIVE 10.64.22.127 3m53s

$ kubectl get osn my-node-01 -o wide
NAME PHASE OWNER POLICY PROVIDER VM FLAVOR VM STATUS VM IPV4 AGE
my-node-01 Joining zangrand-at-infn.it private CloudVeneto cloudveneto.large ACTIVE 10.64.22.127 4m38s

$ kubectl get osn my-node-01 -o wide
NAME PHASE OWNER POLICY PROVIDER VM FLAVOR VM STATUS VM IPV4 AGE
my-node-01 Running zangrand-at-infn.it private CloudVeneto cloudveneto.large ACTIVE 10.64.22.127 7m18s

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
cld-k8-01.cloud.pd.infn.it Ready control-plane,master 232d v1.23.5
cld-k8-02.cloud.pd.infn.it Ready control-plane,master 232d v1.23.5
cld-k8-03.cloud.pd.infn.it Ready control-plane,master 232d v1.23.5
my-node-01 Ready <none> 4m v1.23.5

18

Use case CMS

PowerEd
ge R730

Kafka
Producer

Legnaro
Laboratory

Padova
CloudVeneto

3 x VM: 20 (+1) x VM:

`

Dask
Monitoringkafka

Drift Tube chambers

Data streaming and analysis at runtime (40MHz)

19

next steps

automatic WNs provisioning (serverless)

finalize tests

documentation

20

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

