
Microservices and software development
infrastructure upgrade

Stefano Bovina

I.N.F.N. Information System (A.K.A. sysinfo)

Agenda

Why an upgrade?

Microservices and related challenges

Infrastructure overview

Infrastructure architecture deep dive

Security management

“New software” highlights

2

Why an upgrade?

● A lot of legacy applications need to be
replaced or redesigned from scratch

● To produce “better” software

● To improve management of security
and compliance aspects

● Technological upgrade

● For a better microservice
management

3

Microservices
“...the microservice architectural style is an approach to developing a single application as a suite of small
autonomous services, each running in its own process and communicating with lightweight mechanisms,
often an HTTP resource API. These services are built around business capabilities and independently
deployable by fully automated deployment machinery...”

Account
service

Inventory
service

Shipping
service

Inventory DB

Shipping DB

Shipping
bucket

Account DB

3rd party
service

REST
API

M
essage B

us

REST
API

REST
API

REST
API

API
Gateway

Store
Webapp

REST
API

4

Microservices

Cons:

● Distribution: Distributed systems are harder to
program, since remote calls are slow and are
always at risk of failure

● Eventual Consistency: Maintaining strong
consistency is extremely difficult for a distributed
system, which means everyone has to manage
eventual consistency (Multi-services
transactions/changes are complex)

● Operational Complexity: You need a mature
operations team to manage lots of services, which
are being redeployed regularly

● Global automated testing is more complicated

Pro:
● Strong Module Boundaries: Microservices

reinforce modular structure

● Independent deployment

● Higher degree of organizational autonomy

● Technology Heterogeneity

● Optimized for replaceability

● Scaling independently

● Leads to Improved Fault Tolerance (if we
understand and plan for failures)

● Ease of understanding of the codebase of the
software system

● Isolation of data and isolation of processing
around that data

5

https://martinfowler.com/articles/microservice-trade-offs.html#distribution
https://martinfowler.com/articles/microservice-trade-offs.html#consistency
https://martinfowler.com/articles/microservice-trade-offs.html#ops

Distributed computing fallacies and other requirements
Fallacies/requirements Solutions

The network is reliable Circuit breaker (Resilience4j), retry and timeout design pattern (Resilience4j), message queues (Kafka)

Latency is zero caching strategy (Redis), bulk requests, placement/affinity policy (see Kubernetes policy)

Bandwidth is infinite throttling policy, small payloads

The network is secure firewall (network policy/micro segmentation), encryption (mTLS, Cert-manager), AuthN/AuthZ
(OIDC/Oauth2)

Topology doesn't change no hardcoded IPs, service discovery tools (see Kubernetes service discovery)

There is one administrator DevOps culture

Transport cost is zero standardized protocols like JSON, cost calculation

The network is homogeneous Circuit breaker (Resilience4j), retry and timeout design pattern (Resilience4j)

Observability Monitoring system (Prometheus/Grafana/Sensu/InfluxDB), Log aggregation (ELK)

Automation culture/tools CI/CD platform (Gitlab, ArgoCD), IaC paradigm (Helm/Kustomize/Puppet)

Secret management Vault

F
a
l
l
a
c
i
e
s

6

Kubernetes (k8s)

“ ...a portable, extensible, open-source platform for managing containerized workloads
and services, that facilitates both declarative configuration and automation.”

● Google open-sourced the Kubernetes project in 2014
● Features:

○ Service discovery, load balancing, horizontal scaling
○ Self-healing
○ Automated rollouts and rollbacks
○ Secret and configuration management
○ etc.

7

etcd api-server

cloud-controller-
manager

controller-m
anager scheduler

kubelet

RKE Supervisor

LB

Static pods RKE Supervisor

kubelet

CRI: containerd
Managed processes

Static pods

kube-proxy

CoreDNS

metric-server

helm-controller

RKE2 manifests

K8s Infra workload (addons) K8s Apps workload

Base infra components (Puppet, Firewall, etc.) + Falco (Kubernetes threat detection engine) etc.

Sysinfo Private
Container Registry

K8s infrastructure

8

K8s (RKE2 by Suse)

ArgoCD +
ArgoImgUpdater

Cert-manager

Ingress
controller
(intranet)

logging-operatorOPA
Gatekeeper

prometheus-operator

Ingress
controller
(private)

Ingress controller
(public)

Vault-injector

Sectigo CA

LB
public svc

INFN intranet

svc

Kafka

Logging
Infra

Vault Cluster

Vault Cluster:
Unseal Node

Grafana

Sysinfo Private
Container
Registry

Git
repositories

MongoDB,
PostgreSQL

K8s Infrastructure ecosystem

9

K8s addons

Harbor container registry

1638034685-baltig.62854

Unix timestamp

CI system ID

Pipeline ID

10

Vault

Vault Node 2 Vault Node 3 Vault Node 4

Raft Storage

Leader

Raft Storage

Follower

Raft Storage

Follower

Replicate data

Vault Node 1 (Unseal node)

Transit secret engine

BC

DR site

Secrets management tool by HashiCorp (de facto standard)

Main use cases:
- Application/infrastructure secrets management
- Dynamic secrets (short lived/on-demand database

credentials)
- Automatic database credential rotation

11

logging-operator

prometheus-operator
Kafka

ElasticSearch

Logging
InfraLogstash

Kibana

S3-compatible object storage

Sensu Monitoring InfluxDB

Grafana

Others Src

Filebeat

12

Backups

Gitlab-runner

Sysinfo
SVCsLogging/Monitoring/Archiving interactions

K8s addons

Minio

Software-defined high performance object storage

Features/reasons why we use it:

● Highly available and horizontally scalable
● API compatible with Amazon’s S3 (de-facto standard API for business applications to store unstructured data)
● Bucket Versioning
● Object Lock and Immutability - Write-Once Read-Many (WORM)
● Bucket Notifications (i.e. Kafka)
● Server-Side Bucket Replication (BC/DR)
● Object Lifecycle Management (Transition/Expiration)
● Encryption

13

Use cases:

● gitlab-runner distributed cache
● Long term archiving (es: logs, backups etc.)
● Sysinfo application data

ArgoCD and GitOps

GitOps: versioned CI/CD on top of declarative infrastructure:

● a Git repository that always contains declarative descriptions of the desired infrastructure state
● infrastructure state versioned in Git
● use of continuous integration/continuous delivery pattern
● automated processes to make the production environment match the described state in the repository
● a change to the infrastructure (e.g. a new application) => modify the repository

14

ArgoCD

15

ArgoCD

16

OPA Gatekeeper

package k8spspallowprivilegeescalationcontainer

violation[{"msg": msg, "details": {}}] {
 c := input_containers[_]
 input_allow_privilege_escalation(c)
 msg := sprintf("Privilege escalation container is not allowed: %v", [c.name])
}

input_allow_privilege_escalation(c) {
 not has_field(c, "securityContext")
}
input_allow_privilege_escalation(c) {
 not c.securityContext.allowPrivilegeEscalation == false
}
input_containers[c] {
 c := input.review.object.spec.containers[_]
}
input_containers[c] {
 c := input.review.object.spec.initContainers[_]
}
has_field returns whether an object has a field
has_field(object, field) = true {
 object[field]
} 17

Namespace
Frontend-app1

Namespace
Backend-svc1

Namespace
Backend-svc2

out

outout

blocked traffic

API
Gateway

allowed traffic

/svc1 /svc2

api.example.com

app1.example.com

External
Dependencies (DB,

S3, etc.)

External
Dependencies (DB,

S3, etc.)

Network segregation

18

Circuit breaker: the problem

C1

C2

BF

● C makes a request to F
● F makes a request to B
● After short time Client got a response

● If B:
○ is down
○ is up but the network is unreachable (network partition)
○ is up but is very slow

● C makes a request to F
● F need to wait until the timeout before came back to C
● During the timeout period requests pile up on the F service

C1

C2

BF

C1

C2

BF ● F became unresponsive

Local failures can propagate all over your architecture and destroy all your systems

19

Circuit breaker: the solution

“A service client should invoke a remote service via a proxy that functions in a
similar fashion to an electrical circuit breaker.”

■ If a call fails, increment the number of failed
calls by one

■ If the number of failed calls goes above a certain
threshold, open the circuit

■ If the circuit is open, immediately return with
an error or a default response

■ If the circuit is open and some time has passed,
half-open the circuit

■ If the circuit is half-open and the next call fails,
open it again

■ If the circuit is half-open and the next call
succeeds, close it

Strategy Implementations Fit

Black Box ● Proxies
● Service meshes

Fail fast

White Box Libraries (e.g.
Resilience4j)

Fallbacks relying on
business logic

20

How do we secure this?

21

22

Infrastructure patching&management

Underlying Hardware

Operating system

Hypervisor

VM Operating system

Container Management/Kubernetes

Container OS/Image

App
Need patching and management

INFN S.S.N.N.

Sysinfo

Sysinfo

23

Sysinfo

Infrastructure security management
● GitOps approach

● Static analysis, unit testing and deprecations checks

● Rego policy to enforce K8s best practices and security issues mitigation/prevention:

○ Continuous integration job ---> Trivy scanner

○ K8s API webhook ---> using OPA Gatekeeper

● Vulnerability/compliance scanning

● Minimal base images (updated at least every 24h)

● Image scan before push/after push/periodically (every day)

● Ossec + Falco

● Network Policy

● Log analisys&monitoring

24

Software security management
● Fully automated Continuous integration/delivery pipelines (target: SLSA level as higher as possible https://slsa.dev)

● Automated software security scanning and testing:

○ Decrease the risk of a security breach by automatically blocking known vulnerabilities

○ Critically malicious components and newly released suspicious components are automatically blocked

● Shift-left strategy:

○ Find and prevent defects early in the software delivery process

○ Dev team members are aware of the security constraints and best practices

○ Security by design (cross functional team)

● Software bills of materials (SBOMs):

○ Software “inventory”/ID

○ Generated automatically during the build phase

○ Release of problematic code automatically blocked

○ Enable continuous scanning of released software
25

https://slsa.dev

Dependency track

“An intelligent Component Analysis platform that allows organizations to identify
and reduce risk in the software supply chain.”

● Software bills of materials (SBOMs) as source of truth

● Vulnerabilities/Licenses analysis/management

● Product risk analysis

● Measure and enforce policy compliance

26

Dependency track

27

Dependency track

28

"New software" highlights

1. Better security aspects management

2. Improved automated software testing

3. Design for failure

4. Improved/simplified development and release workflow (no more long lived branches)

5. Limited amount of languages/frameworks

6. Database: MongoDB and PostgreSQL

7. File storage: no more NFS or local filesystem

8. Restricted database read-write access:

○ No more “real data” access required for software development

○ No more “physiological” data correction

○ No more manual schema migration

9. No more shared databases/schema

10. No more database raw data direct access
29

Any organization that design a
system will inevitably produce
a design whose structure is a

copy of the organization’s
communication structure

(Conoway’s law, 1967)

