Will pulsar timing arrays (PTA) observe the Hellings-Downs curve?

Bruce Allen

MPI for Gravitational Physics, Hannover
(and Joe Romano, Texas Tech University)

Will pulsar timing arrays (PTA) observe the Hellings-Downs curve?

Gravitational Wave (GW) spectrum

Credit: Ira Thorpe

How does a PTA work?

Current PTAs

Data: for each pulsar, construct a decade-long time series of redshifts

- EPTA, 42 pulsars

European Pulsar Timing Array

- NANOGrav, 66 pulsars North American Nanoherz Observatory for Gravitational waves
- PPTA, 26 pulsars

Parkes Pulsar Timing Array

- IPTA, merge to get 88 pulsars International Pulsar Timing Array

Evidence for GWs

- Timing residuals from all PTA pulsars show $\Delta t \propto f^{-13 / 3}$, as expected from massive black hole binary source
- Characteristic strain amplitude $h_{c} \approx 1.9 \times 10^{-15}$ consistent with expectations for supermassive black hole binary sources

Current PTAs

- EPTA, 42 pulsars

European Pulsar Timing Array

- NANOGrav, 66 pulsars North American Nanoherz Observatory for Gravitational waves
- PPTA, 26 pulsars

Parkes Pulsar Timing Array

- IPTA, merge to get 88 pulsars
 International Pulsar Timing Array

GOAL: detect gravitational wave via the correlations they induce between the different pulsar redshifts (or timing residuals)

Hellings and Downs Curve (1983)

- Pulsar 1 \& Pulsar 2 correlation for a single unpolarized distant unit-amplitude GW point source
$\rho=F_{1}^{+}(\Omega) F_{2}^{+}(\Omega)+F_{1}^{\times}(\Omega) F_{2}^{\times}(\Omega)$.

Here Ω is wave direction, and F^{+}and F^{\times}are pulsar response (antenna pattern) functions

- Fix pulsars 1 and 2 , separated by angle γ on sky. Hellings and Downs curve (1983) is the mean correlation between timing delays of two pulsars, separated in sky direction by angle γ, averaged over source direction

$$
\begin{aligned}
\mu_{\mathrm{u}}(\gamma)=\langle\rho\rangle & =\frac{1}{4 \pi} \int \rho d \Omega \\
& =\frac{1}{4}+\frac{1}{12} \cos \gamma+\frac{1}{2}(1-\cos \gamma) \log \left(\frac{1-\cos \gamma}{2}\right)
\end{aligned}
$$

- Cornish \& Sesanna 2013: same result if we fix the source, and average over all pulsar pairs at angle γ
- Important: the Hellings-Downs curve is the mean correlation! Any given pulsar pair will not have precisely this correlation.

Questions

- If we had many noise-free pulsars spread around the sky, and we averaged their correlations in an optimal way, would we find $\mu_{\mathrm{u}}(\gamma)$? Or would it deviate? By how much??
- Given a specific pulsars of the different PTAs (not uniformly distributed on the sky), how do we define the Hellings and Downs correlation? Does it match $\mu_{\mathrm{u}}(\gamma)$?

Variance of Hellings-Downs correlation

- Can compute simple analytic forms. For a single pulsar pair: $\sigma_{\text {one-pair }}^{2}=\left(\mu_{\mathrm{u}}^{2}+4 \mu_{\mathrm{u}}^{2}(0)\right) / 2$
- If we average correlation over all pulsar pairs separated by angle γ before computing first and second moments obtain cosmic variance:

$$
\begin{aligned}
\sigma_{\text {cosmic }}^{2}(\gamma)=- & \frac{5}{48}+\frac{49}{432} \cos ^{2} \gamma-\frac{1}{6}\left(\cos ^{2} \gamma+3\right) \log \left(\frac{1-\cos \gamma}{2}\right) \log \left(\frac{1+\cos \gamma}{2}\right)+ \\
& \frac{1}{12}(\cos \gamma-1)(\cos \gamma+3) \log \left(\frac{1-\cos \gamma}{2}\right)+\frac{1}{12}(\cos \gamma+1)(\cos \gamma-3) \log \left(\frac{1+\cos \gamma}{2}\right)
\end{aligned}
$$

In "our" realization of the universe, the pulsar-averaged correlation will not agree exactly with the Hellings-Downs curve. Fluctuations can not be eliminated by averaging over pulsar pairs. The cosmic variance is observable!

Reduction of variance by adding pulsar pairs: approach to cosmic variance

> number of pairs need for $\sigma_{\text {opt }}^{2}$ to reach $(1+1 / e) \sigma_{\mathrm{cos}}^{2}$

(GW confusion-noise model, $\bar{h}^{4}=1 / 2$)

Variance of HD correlation for PTA pulsars ($30 \times 6^{\circ}$ bins, noise-free measurements)

(GW gaussian ensemble, binary inspiral spectrum,
timing residual correlations, $\bar{h}^{2} / h^{2} \approx 0.4$ and $h^{2}=1$)

Two papers

- arXiv:2205.05637, BA

Variance in the Hellings-Downs correlation

- arXiv:2208.07230, BA \& Joseph Romano The Hellings and Downs correlation of an arbitrary set of pulsars

Conclusions

- Existing PTAs should detect Hellings and Downs curve once they have enough data
- Even with many pulsars, don't expect PTAs will observe exactly the Hellings and Downs curve
- We have analytically predicted the scale of the deviations.
- If the observed deviations are much larger or much smaller than predicted, then our universe does not have a GW background described by the Gaussian ensemble (many incoherent SMBH binaries)

THANK YOU

