Future INFN projects in particle physics at accelerators

Roberto Tenchini INFN Pisa

Credits: P. Azzi, M. Masera, R. Nania, V. Vagnoni

SEZIONE DI PISA

Elba Island Vulcano Workshop 2022 - Frontier Objects in Astrophysics and Particle Physics

25 September 2022 to 1 October 2022 Elba Island (Tuscany, Italy)

Future High Energy Physics projects with INFN involvement

- High Luminosity LHC
 - ATLAS and CMS phase 2 upgrades
 - LHCb phase 2 upgrade
 - ALICE phase 2 upgrade
- The Future Circular Collider (FCC)
 - FCC-ee
 - FCC-hh

- The Muon Collider
- Electron Ion Collider
- The neutrino platform at FNAL
 - Short neutrino Baseline (SNB)
 - Long neutrino Baseline (LNB)
- Hyper Kamiokande (HK)

Smaller scale projects: AMBER, BELLE 2 upgrade, HIKE, LUXE, MEG2, MU2E, NA60+, etc.

(approved, under discussion)

• From the European Strategy for Particle Physics:

<u>The full physics potential of the LHC and the HL-LHC,</u> <u>including the study of flavour physics and the quark-</u> <u>gluon plasma, should be exploited.</u>

HL-LHC: the near future

- High luminosity → 200 soft pp interactions per crossing
 - Increased combinatorial complexity, rate of fake tracks, spurious energy in calorimeters, increased data volume to be read out in each event
- Detector elements and electronics are exposed to high radiation dose : requires new tracker, endcap calorimeters, forward muons, replacing readout systems
- Planned detectors shown to be able to successfully operate at the HL-LHC

Roughly reaching limits of current techniques in several systems

Detector answers to the HL-LHC challenge

ATLAS and CMS upgraded detectors (phase 2)

Main INFN INVOLVEMENTS:

- Tracker (ITK)
- Liquid Argon Calorimeter
- Tile Calorimeter
- MUON
- TDAQ

MAIN INFN INVOLVEMENTS:

- Tracker (inner and outer)
- MTD timing layer
- ECAL
- MUON

Examples of physics reach at HL-LHC

Typical deviation to SM (depends on the new physics model) $\Delta \kappa / \kappa \sim 5\% / \Lambda^2_{NP}$ (Λ_{NP} in TeV)

Double Higgs production and Higgs self-coupling Recent RUN 2 results indicates that 5σ observation for HH production is in reach at HL-LHC

Main players in quark-flavour physics

ATLAS and CMS : measure some relevant B-physics channels, mainly with muons in the final state → but also new prospects eagerly awaited with parked data

 NA62: measure the SM branching fraction of K⁺→π⁺νν with 10% precision → future upgrades involve K⁺ and K⁰ rare decays (HIKE)

• LHCb and Belle II:

dedicated detectors for flavour physics with wide range of measurements

KTAG GTK

LHCb Upgrade II : The detector challenge

Targeting same performance as in Run 3, but with pile-up ~40!

Same spectrometer footprint, innovative technology for detector and data processing Key ingredients:

• fast timing (few tens of ps)

600

600

x (mm)

x (mm)

radiation hardness

VErtex LOcator (VELO)

400

200

z (mm)

LHCb Upgrade 2: examples of reach and goals

ALICE physics

- ALICE main goal: explore the deconfined phase of **QCD** matter
 - Quark-gluon plasma (QGP)
- Pb-Pb collisions at the LHC
 - large energy density: > 15 GeV/fm³

QGP

formation

~ 0.5 fm/c

• large volume: ~ 5000 fm³

A-A collision

t=0

12

ALICE 3 detector

Compact, ultra-lightweight all-silicon tracker $\rightarrow \sigma_{p_T}/p_T~\approx$ 1-2%

Large acceptance

 \rightarrow statistics, correlations, rapidity dependence

Vertex detector with unprecedented pointing resolution $\rightarrow \sigma_{\text{DCA}} \approx 10 \mu m \text{ (p}_{\text{T}} = 200 \text{ MeV})$

excellent electron and hadron identification (TOF + RICH) $\rightarrow \pi/K/p$ separation up to a few GeV/c,

 \rightarrow electron ID up to \thickapprox 3 GeV/c with x10³ pion rejection

muon identification (Muon absorber + Muon chambers) \rightarrow muon ID down to $p_{\rm T}\approx$ 1.5GeV/c

ECal (Muon absorber + Muon chambers)

 \rightarrow photons/jets over large $\eta,$ high-resolution central segment

Superconducting magnet system (2T)

Continuous read-out and online processing

⇒ detector with unique and unprecedented features at the LHC

ALICE 3: a next-generation heavy-ion detector for LHC Run 5 & 6

Key physics questions and drivers

- I. Nature of **interactions with the QGP** of highly energetic quarks and gluons
- II. To what extent do quarks of different mass reach thermal equilibrium ?
- III. What are the **mechanisms of hadron formation** in QCD?
- Systematic measurement of (multi-)charm and beauty hadrons

- Hadron interaction potential (➡ hadron-hadron correlations)

After HL-LHC: the FCC integrated project

Comprehensive long-term program maximizing physics opportunities

- stage 1: FCC-ee (Z, W, H, tt̄) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options
- complementary physics
- common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC integrated project allows seamless continuation of HEP after completion of the HL-LHC program

2065 - 2090

A first class infrastructure to maintain the leadership of European research in particle physics over the 21st century

Where nature decided to put stuff (the electroweak playground)

Some key points about FCC

• FCC-ee is not just about brute-force luminosity

- <u>Continuous calibration of centre-of-mass energy</u> (e.g. 100 keV at the Z) with resonant depolarization
- <u>Direct measurement of parameters</u>, which were computed until now (e.g. direct measurement of α_{QED} running)
- There is a well-defined theory effort, to successfully use data in a meaningful way (e.g. 3-loop calculations)
- It has been shown in various ways (e.g. EFT analyses) that a jump in precision in Z, W, H, top measurements is required for a comprehensive interpretation of the electroweak sector
 - A deviation of a single coupling or operator will not provide the full picture
- FCC-hh is eventually required to precisely investigate the Higgs self-coupling, to close important chapters (e.g. WIMP interpretation of Dark Matter) and to significantly extend direct searches

Mass scale [TeV]

Provisional projection curve based on expected detector performance ("Updated(2021)" in summary table)
(20 DAQ weeks for 6 month beam time) per year
DAQ time 2021 with correction for fraction of physics run

Performance of drift chamber is very good, already with initial alignement momentum resolution improved by a factor of 4 w.r.t. MEG I

The Mu2e experiment at Fermilab

Searching for muon-to-electron conversion in a thin aluminum stopping target

Mu2e progresses 2022: Critical path still driven by Solenoids +1.5 year Delay due to Covid \rightarrow REBASELINED by DOE in Sept 2022.

Calorimeter disk assembled with crystals (INFN responsibility)

EIC: Electron Ion Collider: the next QCD machine

- DoE supports the project including one detector at IP6 but design for two interaction regions
- INFN in-kind contribution to the accelerator under discussion (mitigation of secondary electron yields in hadron storage ring)

EIC timescale and the ePIC detector

Italian R&D in ePIC detector (under sigla "EIC_NET", currently 85 researchers 20 FTE)

PID – forward dual RICH	Prototype and optics	FE					
	Aerogel studies	BA FE					
	SiPM and electronics	BO FE TO CS SA CT					
	LAPPD for Cerenkov app.	GE TS					
	Pressurized vessel	LNS TS					
Vertex	Development of MAPS 65 nm	BA PD TS					
Streaming readout	DAQ and AI algorithms	GE RM2					
Physics, software and	SIDIS	PV					
simulations	Parton imaging and diffraction	CS TO					
	Simulation	TS BA LNS SA					

- ePIC Collaboration (arising from detector proposals "ATHENA" and "ECCE") formed in July 2022
 → detector 1 at IP6
- 160 institutions (41% US, 27% from Europe)
- Pre-TDR to be finalized by October 2023
- Detector TDR by end of 2024!

Neutrini, their oscillations and masses

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\alpha_1} & 0 & 0 \\ 0 & e^{i\alpha_2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

θ_{23} & ΔM^2_{32}	CP ph	ase $\delta \& \theta_{13}$	θ_{12} & ΔM^2_{21}	Majorana phase
Accel. LBL (νμ, νμ) disapp. (K2K, MINOS, T2K, NOvA) Accel. LBL (νe, νe) appearance (MINOS, T2K, NOvA) Atmospheric Experiments (SK, IC-DC)	Reactor LB Reactor MB Double Cho Accel. LBL (MINOS, T2	L (KamLAND) BL (Daya Bay, RENO, ooz) (ve, ve) appearance 2K, NOvA)) Double beta decays Normal Ordering $z = -\frac{U_{e1}U_{e3}^*}{U_{\mu1}U_{\mu3}^*}$	
Important projects in preparation: e.g., DUNE, HyperK, JUNO, KM3net, SB → Status reports at this conference	N Program	Leptonic mixing m poorly known inclu	atrix (PNMS matrix) still uding mass ordering	$0.5 = \frac{U_{\mu_1}U_{\mu_3}^*}{U_{\mu_1}U_{\mu_3}^*} = \frac{U_{\mu_1}U_{\mu_3}^*}{U_{\mu_2}U_{\mu_3}^*} = \frac{U_{\mu_1}U_{\mu_3}^*}{U_{\mu_3}U_{\mu_3}^*} = \frac{U_{\mu_2}U_{\mu_3}^*}{U_{\mu_3}U_{\mu_3}^*} = \frac{U_{\mu_3}U_{\mu_3}^*}{U_{\mu_3}U_{\mu_3}^*} = \frac{U_{\mu_3}U_{\mu_3}^*}{U_{\mu_3}U_{\mu_3}^*}} = \frac{U_{\mu_3}U_{\mu_3}^*}{U_{\mu_3}^*} = U_$
				-0.5

-1

-0.5

Re(z)

A project recently completed : Icarus 600 T @ SBN

NU@FNAL: DUNE

Some physics goals (phase 1) Oscillation Physics:

- Definitive resolution of the mass ordering
- Sensitivity to maximal CP violation ($\delta CP \sim \pm \pi/2$)
- World-leading measurement of mass splitting (Δm2atm)

DUNE Far - Photon Detection System (PDS)

DUNE

European site for WLS evaporation

INFN

DUNE Near from KLOE \rightarrow SAND

DUNE

Granular Argon for Interaction of Neutrinos (GRAIN)

- provide an independent measurement of the flux
- measure the flavor content of the neutrino beam
- contribute to remove degeneracies when the other components are off-axis
- add robustness to the ND complex to keep systematics under control
- provide a reasonable control of the systematics (SAND installed since Day-1 of data taking)
- exploit the high statistics to perform other high precision neutrino physics measurements and BSM searches without any ad-hoc modification

Fermi National Accelerator Laboratory, Illinois

DUNE schedule

2030

Schedule Far Site

Hyper-Kamiokande in a nutshell

Hyper-K water Cherenkov at Kamioka (host U-Tokyo)

High intensity proton beam at JPARC (host KEK)

World largest detector for nucleon decay and neutrino experiment

2. 8.4 times larger fiducial mass (190 kt) than Super-K with new photosensors: twice-as-sensitive 20'' PMTs and multi-PMTs

3. World most intense neutrino beam

4. 2.6 higher JPARC beam intensity (1.3 MW) than T2K

5. New and upgraded near detectors to control systematics errors

Hyper-Kamiokande vs DUNE

- Multipurpose experiments, similar goals, a different, complementary approach:
- Baselines and energy ranges: narrow band beam vs wide band beam
- Detector masses: fiducial 190 kton vs 20 (40) kton
- Detection process: at 10 MeV mainly IBD (antinue) vs CC (nue)
- Detector technology: water Cherenkov vs liquid Argon TPC

Hyper-Kamiokande timeline and INFN

There is no summary ... but a BIG THANKS to the Organizers for the excellent Workshop !!!

Additional Information

- SuperKEKB: new record of instantaneous luminosity (June '22): Lpeak = 4.7 1034 cm⁻²s⁻¹ 'crab waist scheme': 1300 mA (LER), 1040 mA (HER)
- Excellent performance of the detector, several publications and new results at ICHEP 2022
- Machine far from the target luminosity, long shutdown foreseen in 2026-7 (LS2) to upgrade final focus and for other interventions
- LS2 in 2026-7 is an important opportunity for a detector upgrade that improves robustness (vs BKG) and performance

Belle 2 complementarity vs LHCb

	relevance	limitations	timeline	wrt LHCb
$ V_{ub} $ and $ V_{cb} $	Limits UT fit precision Help sorting out incl-vs-excl	Sistematics Lattice	pre-/post-LS1	Dominated by Belle II
R(D) and R(D*)	Anomaly	Sistematics	pre-/post-LS1	Dominated by Belle II
$\begin{array}{c} B \rightarrow K({}^{*}) vv, \ B \rightarrow K({}^{*}) \tau \ \tau, \ B \rightarrow K({}^{*}) \tau v, \\ B \rightarrow \tau \tau, \ B \rightarrow \tau \ell, \ B \rightarrow \tau v. \end{array}$	Sensitive to BSM related to $b \rightarrow s \ \ell \ell$	Sample size	pre-/post-LS1	Unique to Belle II
$\begin{array}{ccc} B^{0} \rightarrow & K^{0}\pi^{0} \text{: } B^{0} \rightarrow & \pi^{0}\pi^{0} \text{, } B \rightarrow & \rho\rho/\rho\pi \text{,} \\ D^{+} \rightarrow & \pi^{+}\pi^{0} \end{array}$	Sensitive to BSM, CKM angle a check CPV in charm	Sample size	pre-/post-LS1	Unique to Belle II
Radiative	Sensitive to BSM	Sample size	pre-/post-LS1	Dominated by Belle II
Precision τ	Fundamental SM parameters Sensitive to BSM	Systematics/trigger	pre-/post-LS1	Unique to Belle II
Low-mass dark sector	Sensitive to BSM Related to muon g-2	Systematics/trigger	pre-/post-LS1	Unique to Belle II
$\Theta^+\Theta^- \to \pi^+\pi^-(\gamma)$	Key input to muon g-2	Systematics/trigger	pre-/post-LS1	Unique to Belle II
Spectroscopy/quarkonia	QCD and test LFU	Sample size Special runs	pre-/post-LS1	Unique to Belle II
Rare T	Sensitive to BSM	Sample size	post-LS1	Dominated by Belle II
$\begin{array}{c} B^{0} \rightarrow \eta' K^{0}, \ B^{0} \rightarrow \varphi K^{0} \\ B^{0} \rightarrow \rho^{0} \gamma \end{array} $	Sensitive to BSM	Sample size/syst	post-LS1	Unique to Belle II
R(K) and R(K*)	Anomaly	Sample size	post-LS1	Healthy redundancy
Angle y	Fundamental SM parameter	Sample size	post-LS1	Healthy redundancy
Chiral Belle II	Fundamental SM parameter probe BSM	Sample size SKEKB upgrade	post-LS1	Unique to Bell <mark>g</mark> l

MAG2 and the future: HIKE

SPSC approved the extension of run NA62 until the end of LS3 (2021-2024)

- BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) with an error comparable to the theoretical one (O 10%)
- Improvement of LNF and LNV decay limits
- Run in dump mode: 10¹⁷, 10¹⁸ Proton On Target (10gg, 3mesi) NP searches for MeV-GeV mass hidden-sector candidates: dark photons, heavy neutral leptons, Axions/ALP's, etc

HIKE, extensive multi-stage programme :

- K^+ with beam intensity 4x NA62 : 500 $K^+ \rightarrow \pi^+ \nu \nu$ decays
- K_L with beam intensity 6x NA62: 60 $K_L \rightarrow \pi^0 vv$ decays
- Intermediate phase : K_i beam, detector with tracking & PID, rare decays, Lepton-flavor violation, $K_L \rightarrow \pi^0 e^+ e^- \dots$
- Frequent runs in dump mode for exotics

Mu2e status 2022

Mu2e progresses 2022: Critical path still driven by Solenoids +1.5 year Delay due to Covid → REBASELINED (Sept 2022)

- Solenoids: (GA) Winding of PS completed, DS is well progressed (ASG) TS-U + TS-D done
- Accelerator: first beam in M4 beamline, ESS under way, Production Target: done
- Tracker: Panel assembly ~ completed in Minnesota. 220/240. Plane construction underway O(50%)
- CRV: Scintillators and SiPMs done. Module production reached 80%. FEE OK, readout in progress
- Calorimeter: Prod of 1500 CsI, 4000 SiPMs, 3500 FEE boards done. 2500 FEE tested, 800 at DUBNA
 - → Production of large mechanical parts completed, Calorimeter assembly started at FNAL
 - → Digital boards well progressed. MB production started. DIRAC delayed to FPGA shortage in market
- 6 months of commissioning in the PIT end 2023 with calorimeter. Tracker and part of CRV end 2024
- 2024-2025 is transition to operation. Commissioning inside the DS with magnet ON, Cooling at 0 °C

$\mu \rightarrow e$ transitions, complementarity between MEG II / Mu2e

If dipole operators are involved MEG is better by $1/\alpha$, in other cases it's the other way around

Apparatus for Meson and Baryon **Experimental Research**

Phase 1 (approved by SPSC) ٠

- Measurement of the proton radius
- Production of antiprotons, antideuterion, antihelium
- Measurement of pion structure using Drell-Yan as a probe
- Phase 2 (not approved, yet) ٠
 - dedicated to negative kaon beams and high-intensity antiprotons •

Drell-Yan process is a low crosssection process:

- High intensity hadron beam
 - Hadron absorber to protect Spectrometer from a very high secondary flux
- Vertex Detector to compensate loses in resolution because of the absorber in order to improve mass and space resolution

• 3.2) First RUN

• 3.1) First test Run

3) Drell-Yan

Title

1) Proton Radius

• 1.1) 2021 TEST Run

• 1.2) 2022 TEST Run

• 1.3) 2023 Pilot Run

2) Anti-Matter production

• 2.1) Test measurement

• 2.2) Commissioning • 2.3) Data Taking 2023

• 1.4) 2024 Run 1

Luxe at the DESY Eu.XFEL

- XFEL and high-power LASER electron beam collisions
 - Investigating QED in regimes beyond the Schwinger limit by XFEL electron scattering on photons from a very high power laser (100 TW)..
- Collabotion 90 members (26 institutes)
- INFN grups: Bologna, Padova
- INFN proposed contribution : beam profile measurement with a detector made with strips on sapphire

Thickness: 0.1 mm Pitch: 0.1 mm 200+200 Readout channels

		2021			2022				2023				2024				2025				2026				
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Photon Profiler	Procure detector prototypes and test																								
	Test beam at ELBE/FRASCATI/XFEL																								
	LUBPRO design, production																								
	Movable support mechanics design, production																								
	Detector installation/commissioning																								
	Detector ready for data-taking																								

EIC: Electron Ion Collider

- Highly polarized electron (~70%) and proton (~70%) beams
- Ion beams from deuterons to heavy nuclei such as gold, lead, or uranium
- Variable *e*+*p* center-of-mass energies from 20–100 GeV, upgradable to 140 GeV
- High collision electron-nucleon luminosity $10^{33} 10^{34}$ cm⁻² s⁻¹

2.2	Origin of Nucleon Spin
2.3	Origin of Nucleon Mass
2.4	Multi-Dimensional Imaging of the Nucleon
2.5	Imaging the Transverse Spatial Distributions of Partons
2.6	Physics with High-Energy Nuclear Beams at the EIC
2.7	Nuclear Modifications of Parton Distribution Functions
2.8	Passage of Color Charge Through Cold QCD Matter

NA60+: current status and timeline

Schematic detector layout for $\sqrt{s_{NN}}=6$ GeV at North hall H8 beamline

Letter of Intent 2022 (in preparation)

Planned data taking starting 2029

1 month/year

5-6 years

•

٠

Israel Weizmann Inst.

Additional interested Institutions in France, Germany, and India

10 10^{3}

Pb-Pb 40 GeV NA60-0-5% central collisions

Advanced performance studies

10

0 250 200 E_{beam}=60 AGeV 150-1028262 ± 285 mass K_π (GeV/c²) $D^0 \rightarrow K\pi$

NA60+: physics case

- □ Four main "pillars"
 - □ Thermal dimuons from QGP/hadronic phase: caloric curve
 - **ρ**-a₁ modifications: chiral symmetry restoration
 - **Quarkonium suppression: signal of deconfinement**
 - Open charm mesons/baryons: QGP transport coefficients

(MeV) T (MeV)

200

150

100

50

HADES^{T=72±2MeV}

NA60^{T=205±12N}

Thermal

dimuons

No accurate data exist for any of these observables below top SPS

NA60+: overview

- Aim: perform accurate measurements of the dimuon spectrum from threshold up to the charmonium mass region, and of hadronic decays of charm and strange hadrons
- □ Energy scan with a Pb beam from top SPS energy (Vs_{NN} =17 GeV) down to Vs_{NN} ~ 6 GeV (E_{lab} ~20 A GeV)
- Based on a muon spectrometer (toroid field) coupled to a vertex spectrometer (dipole field)
- □ High luminosity is an essential requirement \rightarrow 10⁶ s⁻¹ Pb ions/s

LNL and LNS upgrades open new perspectives

40 MeV - 200 µA of protons → production of reaccelerated neutron-rich exotic beams 10¹³ fission/s in-target production, and reacceleration at 10*A MeV (A=132)

High-intensity RIBS with FRAISE Production in-flight → complementarity with SPES in terms of energies, species and lifetimes Intensities up to 10⁸ pps with high purity

Superconductive cyclotron: new extraction channel by stripping. For light ions up to A^{40} intensities up to $^{10^{14}}$ pps (5 - 10 kW on target) \rightarrow new physics cases

... and will host new and upgrades facilities for new physics

Active Target (ATS): aims at building a gas detector to measure transfer reactions. The ATS is at the same time the target and the detector and will be used with SPES beams

 $^{11}\mbox{B+iC}_4\mbox{H}_{10}$ at 32 MeV 3 particles emitted and stopped in the gas.

AGATA: highly segmented germanium gamma-ray tracking array. Currently the most advanced gamma-array in Europe at LNL for a campaign with stable and SPES beams. Ongoing development to produce p-type detectors (call N3G).

AGATA coupled to the magnetic spectrometer PRISMA

PANDORA aims at building an innovative magnetic plasma trap, for interdisciplinary and fundamental research, the study of β -decays under astrophysical conditions

MAGNEX is under upgrade for allowing the extraction of *"data-driven"* information on Nuclear Matrix Elements for all the systems candidate for $0\nu\beta\beta$. For the use with high intensity beams a new focal plane detector, a new gas tracker and a LaBr3 calorimeter will be installed

CSN1: RD_FCC

105 scientists/15.3 FTE

- IDEA detector: light tracker (Drift Chamber), a dual-readout calorimeter, and a light-weight magnet.
 - Baseline for physics/performance studies and technology exploration.
 - Test-beams in progress
- Machine-Detector-Interface
- Activities in simulation/software
 - Algorithm development:jet flavour tagging,
 Particle ID, tau reconstruction
 - Physics studies: Higgs Recoil, Flavor, Ағв(bb,cc), ALPS, Top

https://agenda.infn.it/e/FCC-Italy