Recent dark-sector results at Belle II

Paolo Branchini INFN – Roma Tre on behalf of the Belle II Collaboration

P. Branchini – Recent dark-sector results at Belle I

Belle II

OUTLINE OF THE TALK

✓ Belle II and SuperKEKB
✓ Search of
➢ Dark Higgsstrahlung
➢ Z' to invisible e^{-1} erec
➢ Z', S, ALP → ττ e^{-1} erec $\tau \to 1 \alpha$

✓ Perspectives & Summary

Dark matter hunt with a light sector

Light Dark Matter Mediators → portals

Vector portal Dark photon, Z', ... Pseudoscalar portal

QCD Axions, ALPs, ...

Scalar portal Dark Higgs, scalars

Neutrino portal Sterile neutrino

Energy frontier

Direct production of new particles limited by beam energy (LHC – ATLAS, CMS)

Cosmic frontier

Direct effect search in (mostly) underground experiments

Dark Matter

P. Branchini – Recent dark-sector results at Belle II

SuperKEKB: a new Intensity Frontier machine

SuperKEKB is a super B-factory Located at KEK(Tsukuba, Japan) It's an asymmetric ete collider operating mainly at 10.58 GeV (Y(4S), but possible runs from Y(2S) to Y(6S))

SuperKEKB: a new Intensity Frontier machine

P. Branchini – Recent dark-sector results at Belle II

Where are we now?

Collected luminosity up to now: 2019-2022

Peak luminosity world record 4.7 x 10³⁴ cm⁻² s⁻¹

Resume physics run in fall 2023

Belle II: a new Intensity Frontier detector

Vertex detectors (VXD): vertex resolution: 15 µm

electrons

Electromagnetic Calorimeter (ECL):

electronID: π/K fake rate 1%/0.01% at ϵ =95%

energy resolution: 1.6%-4%

Central drift chamber (CDC):

spatial resolution: 100 µm dE/dx resolution: 5% pT resolution: 0.4%

KL and muon detector (KLM): muonID: π/K fake rate 2%/1% at ϵ (K)=95%

Magnet: 1.5 T superconducting

Trigger:

dedicated lines for low multiplicity studies:

- single track
- single photon
- single muon

Particle Identification (PID): kaonID: π fake rate 1.8% at ϵ (K)=95%

Positrons

Belle II trigger

Dark sector physics

- Low multiplicity signatures
- Huge backgrounds from beam, Bhabha, two-photon

Level 1 hardware-based combines info from CDC, ECL, KLM

- Tracks, clusters, muons
- Two-track trigger
- Three-track trigger
- E_{ECL}> 1 GeV trigger

Single muon

CDC + KLM

Single track

Neural based

Single photon

Dark Higgsstrahlung: e⁺e⁻→ A'h'

U(1)' vector portal extension of SM –

- dark photon A couples with kinetic mixing ${f \epsilon}$ to SM
- dark Higgs h'

gives mass to A' through SSB no mixing of h' with SM Higgs couples with α_{p}

Mass hierarchy scenarios

h' → A'A', e⁺e⁻→ A'A'A' probed by Babar and Belle $M_{h'} < M_{A'}$ this search

Invisible h' (long-lived), missing energy 2d peak in $M_{\mu\mu}$ and M_{recoil} Probed by KLOE

Largely unconstrained

 $e^+e^- \rightarrow \mu^+\mu^- + missing energy$

 $\mu^+\mu^-$

Vector portal

Dark Higgsstrahlung: results

P. Branchini – Recent dark-sector results at Belle II

Z' to invisible: analysis

Main backgrounds

e⁺e⁻ $\rightarrow \mu^{+}\mu^{-}(\gamma)$ e⁺e⁻ $\rightarrow \tau^{+}\tau^{-}(\gamma), \tau^{\pm} \rightarrow \mu^{\pm}\nu\nu$ e⁺e⁻ \rightarrow e⁺e⁻ $\mu^{+}\mu^{-}$

 $e^+e^- \rightarrow \mu^+\mu^- + missing energy$

Look for bumps in recoil mass against a $\mu^+\mu^-$ pair

Two-track trigger Two muons, $p_T^{\mu} > 0.4 \text{ GeV/c}$ Recoil \rightarrow barrel ECL $M_{\text{recoil}} < 2 \text{ GeV/c}^2$ No extraenergy, γ veto

NN trained to optimize Punzi FOM *Eur.Phys.J.C* 82 (2022) 2, 121

Z' to invisible: analysis

• $\tau^+\tau^-(\gamma)$ almost 100% suppressed

- μ⁺μ⁻ (γ) dominates up to ~7 GeV/c²
- e⁺e⁻μ⁺μ⁻ dominates for high masses

Look for bumps in θ_{recoil} vs M²_{recoil}

Z' to invisible: observed yields

Z' to invisible: results

- No excess found
- Set 90%CL exclusion limits on cross section and coupling
 - Scenario: Z' decays to SM only
 - Fully invisible scenario

NEW – from ICHEP

Z' / S / ALP $\rightarrow \tau^{\scriptscriptstyle +}\tau^{\scriptscriptstyle -}$

We probed three different models:

- Z' $L\mu L\tau$ model - <u>JHEP 12 (2016) 106</u> (theo. paper)
 - vector portal
 - first time search in $\tau\tau$

Leptophilic dark scalar S modelPRD 95 (2017) 075003

(theo. paper)

- Yukawa couplings
- constraints by BaBar in $S \rightarrow \mu\mu$
- first time search in $\tau \tau$

 e^+ μ^+ τ^+ μ^+ μ^+

- $ALP \rightarrow \tau\tau$ arXiv:2110.10698
- $C_{ee} = C_{\mu\mu} = C_{\tau\tau}$; $C_{\gamma\gamma} = C_{Z\gamma} = 0$
- Yukawa-like effective couplings
- ALP-τ coupling unconstrained

Z' / S / ALP $\rightarrow \tau^{\scriptscriptstyle +}\tau^{\scriptscriptstyle -}$ - Reconstruction

Dataset: 63.3 fb⁻¹

Basic selections:

-considering only 1-prong τ decays

 \rightarrow require 4 tracks

- $-2\mu + 2e/\mu/\pi$
- -M(4 tracks) < 9.5 GeV
- -allowed neutrals
- -scan Mrecoil(μμ)
- -NN selection to

get rid of background

Main backgrounds: $-\tau^{+}\tau^{-}(\gamma)$ (1x3-prongs events) -qq -1+1-1+1- (no ISR in our simulation) $-\mu^{+}\mu^{-}\pi^{+}\pi^{-} + e^{+}e^{-}X_{had}$ (not simulated)

Z' / S / ALP $\rightarrow \tau^{\scriptscriptstyle +}\tau^{\scriptscriptstyle -}$ - Data and MC specta

Discrepancies expected and understood due to missing features in simulation

Smooth distribution and no peaking structures in $M_{recoil}(\mu\mu)$ \rightarrow NB: signal mass resolution from 1.5 MeV to 30 MeV

$\tau^{\pm} \rightarrow (e^{\pm} / \mu^{\pm}) \alpha ; \alpha \rightarrow invisible$

Can be relevant for NP models such as light ALP

 \rightarrow our search is, however, spin-insensitive

Best upper limits on $B(\tau \rightarrow 1\alpha)/B(\tau \rightarrow 1\nu\nu)$ from ARGUS (476 pb⁻¹, <u>Z. Phys. C 68 (1995) 25</u>)

From phenomenology: consistency of $B(\tau \rightarrow 1\nu\nu)$ with SM predictions

With current data, Belle II can already set more stringent limits

m_v (GeV/c²)

$\tau^{\pm} \rightarrow (e^{\pm} / \mu^{\pm}) \alpha$ - Reconstruction

Dataset: 62.8 fb⁻¹

Split event in two hemispheres across thrust

axis Require exactly 4 tracks:

1 lepton on signal side

3 pions on tag side

 $\hat{p}_{\tau} \approx$

- veto neutrals (γ , π^0) for reducing hadronic background

 $\tau \rightarrow 1\alpha$ events are indistinguishable from $\tau \rightarrow 1\nu\nu$ (irreducible background)

Look for a "peak" in lepton spectra computed in the τ pseudo-mass

 $-\vec{P}_{3\pi}$

$\tau^{\pm} \rightarrow (e^{\pm} / \mu^{\pm}) \alpha$ – Results

No signal observed \rightarrow set 95% CL upper limits

Largest systematics from particle identification Most stringent measurements in these channels to date

Summary

- Negative results from LHC and direct search experiments → light dark sector scenario more and more attractive
- Belle II at SuperKEKB has great potential thanks to low-background collisions, hermeticity, dedicated triggers
- Belle II had two results with 2018 pilot run dataset: invisible Z' and ALP $\Rightarrow \gamma \gamma$
- Belle I started the physics run in 2019: 424 fb⁻¹ collected up to now

Summary

• Today World-leading results for searches of:

 \rightarrow Dark Higgsstralung e⁺e⁻ \rightarrow A'h', with A' \rightarrow µµ and h' invisible **Example 2'** within the $L_{u}-L_{\tau}$ model \succ Z' $\rightarrow \tau \tau$ within the L_u-L_t model - > Leptophilic dark scalar S $\rightarrow \tau \tau$ $\rightarrow Axion-like-particle a \rightarrow \tau \tau$ $rac{}{}$ τ[±] → (e[±]/μ[±]) α, α → invisible New seaches going on in B decays (B⁺ ->K⁺+S and B⁺ ->K⁺+A) so... stay tuned!

We expect to lead the light dark sector searches in the next decade

SPARE SLIDES

Z' / S / ALP $\rightarrow \tau^{+}\tau^{-}$ - Reconstruction

Dataset: 63.3 fb⁻¹

- Basic selections: - considering only 1-prong τ decays \rightarrow require 4 tracks
 - 2μ + 2e/μ/π
 M(4 tracks) < 9.5 GeV
 - allowed neutrals
 - scan Mrecoil(μμ)

Main backgrounds:

- $\tau^+\tau^-(\gamma)$ (1x3-prongs events)
- qq
- 1+1-1+1- (no ISR in our simulation)
 - $\mu^+\mu^-\pi^+\pi^-$ + e⁺e⁻Xhad. (not simulated)

Background suppression via dedicated Neural Network \rightarrow 8 NN ranges in M_{recoil}(µµ)

From KEKB to SuperKEKB: long term plan

Final goal : 50 ab⁻¹

63.3 fb⁻¹ (2019-2020)

3-track OR single muon trigger 1-prong τ decays (+ neutrals) 4-tracks 2 μ + 2x e/μ/π M(4-track) < 9.5 GeV/c² Scan M_{recoil} (μμ)

Main backgrounds

 $e^+e^- \rightarrow e^+e^- X_{hadronic}$ not simulated

Background suppression NN MLP (Multi Layer Perceptron) 8 MLP ranges in M_{recoil} (μμ)

- resonance vs μμ
- FSR production
- ττ system

Optimize selections for $Z' \rightarrow \tau \tau$ 99% background reduction

Control sample $2 \pi + 2x e/\mu/\pi$

Z', S, ALP $\rightarrow \tau\tau$: observed yields

Z', S, ALP $\rightarrow \tau\tau$: results

From KEKB to SuperKEKB

P. Branchini – Recent dark-sector results at Belle II

From KEKB to SuperKEKB

Limitation found so far

Shorter beam lifetime than expected

- As a result, the maximum bunch currents are limited by the balance between the lifetime and the injection power.
- Lower bunch-current limit than expected due to TMCI
 - Due to higher impedance of beam collimators, in which the apertures are smaller than the design values to suppress high background.
- Beam-beam effect (vertical beam size blow-up)
 - Relaxed by the crab-waist collision scheme, but still remains.
- Low operation efficiency
 - Operation efficiency during 2021a, b is almost 0.5, lower than expected one, 0.65.
 - Machine tunings, machine troubles, maintenance, etc.
- Aging of hardware and facilities, and so on.

Light Dark matter hunt

es depending or

Probability of interaction of LDM detectors is negligible

• Search for mediators

DM ↔ mediator mas

- Search for missing energy signature
- Search for both

Additional benefits:

- Explanations of some astrophysics anomalies (PAMELA, AMS, FERMI, ...)
- Explanation of the $(g-2)_{\mu}$ effect –

- Explanation (with additional hypotheses) of some flavour anomalies (LHCB, Belle, ...)
- Some light mediators (not interacting with quarks) could escape direct search exclusion limits

Searching for dark matter

Dark matter/mediators

Vector portal Dark photon, Z', ...

Pseudoscalar portal Axions, **ALPs**, ...

Scalar portal Dark Higgs, scalars

Neutrino portal Sterile neutrino

Belle II trigger

Dark sector physics

- Low multiplicity signatures
- Huge backgrounds from beam, Bhabha, two-photon

Level 1 hardware-based combines info from CDC, ECL, KLM

- Tracks, clusters, muons
- Two-track trigger
- Three-track trigger
- E_{ECL}> 1 GeV trigger

Single muon

CDC + KLM

Single track

Neural based

Single photon

Dark Higgsstrahlung: analysis

Dark Higgsstrahlung: systematics

2 control samples

μμγ μμ(γ) background eμ ττ background Split mass plane into orthogonal macroregions

- Each dominated by a single background source
- Data/MC normalization + shape

source	uncertainty	target
Pre-selections	2 - 9.1%	BKG & signal
BKG shape	9.3% (region specific)	BKG
C_η cut	1%	BKG
Mass resolution	2.4% (on average)	signal
Eff. Inside windows	2 - 5%	signal
Theory (BR A')	4%	signal
		The second second

Negligible effect on Uls (~1%)
 Exception is M_{A'} > 9 GeV/c² (~25)

Dark Higgsstrahlung: data/MC

Moriond

Z' to invisible: systematics

- τ⁺τ⁻ (γ) almost 100% suppressed
- μ+μ-(γ) dominates up to ~7 GeV/c²
- e⁺e⁻ μ⁺μ⁻ dominates for high masses

Look for bumps in θ_{recoil} vs M²

3 control samples

μμγ selection+NN studies
eμ selection+NN studies
ee(γ) γ veto studies

low mass medium+high mass

Systematics

Source	Low mass	Medium mass	High mass
selections	2.7%	6.5%	8.3%
Mass resolution	10%	10%	10%
Background shapes	3.2%	8.6%	25%
Photon veto	34%	5%	5%
luminosity	1%	1%	1%

Vanilla model invisible Z'

Z' to invisible results

-Fully invisible Z'

Vanilla model invisible Z'

Z' to invisible results

S

$= 0.1 M_{7'}, 0.15 M_{7}$

Z', S, ALP $\rightarrow \tau\tau$: systematics

source	Uncertainty (%)
trigger	2.7
Particle ID	3.9-6.2
Tracking	3.6
Fit bias	4
MLP selection	2.8
Mass resolution	3
Efficiency interpolation	2.5
Luminosity	1
other	1
Total	8.8-9.9

Negligible effect on sensitivity and UIs \rightarrow 1

NEV