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The standard cosmological model

Theoretical foundation: The Cosmological Principle

The Universe is spatially isotropic:
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[Planck Collaboration (2018)]

The Universe is homogeneous at large scales:

The Universe is expanding.

Salvatore Capozziello Modified Gravity vs Dark Energy



The standard cosmological model

Friedman equations:

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2

ä

a
= −4πG

3
(ρ+ 3p)

Energy conservation:

ρ̇+ 3H(ρ+ p) = 0 , ρ =
∑
i

ρi

Equation of state (EoS): w = p/ρ

Densities of the cosmic species: ρi ∝ a−3(1+wi)

ρ̇i + 3H(1 + wi)ρi = 0

Normalized density parameters:

Ωi =
8πG

3H2
ρi , Ωk =

−k
(aH)2

,
∑
i

Ωi = 1
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The cosmological constant

GR + cosmological constant:

Gµν + gµνΛ = 8πG Tµν

Friedmann equations (with Λ):

H2 =
8πG

3
ρ− k

a2
+

Λ

3
ä

a
=− 4πG

3
(ρ+ 3p) +

Λ

3

Cosmological constant EoS:

wΛ = −1 , ρΛ =
Λ

8πG
= −pΛ

Hubble expansion rate:

H(z) = H0

√
Ωr(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ
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The concordance paradigm
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The cosmological constant problem

Huge numbers

Energy scales (units of c = ~ = kB = 1):

MPl = G−1/2 ≈ 1019 GeV , H0 ≈ 10−42 GeV

FLRW cosmology:

ρΛ = ΛM2
Pl ' H2

0M
4
Pl ≈ 10−46 GeV4

Quantum field theory:

ρvac ∼M4
Pl ≈ 1076 GeV4 ρvac ∼ 10122ρΛ

Coincidence

Very different evolution histories:

ΩΛ

Ωm
=
ρΛ

ρm
∝ a3

A fine tuning is needed to explain observations:

ΩΛ ' 0.7 , Ωm ' 0.3
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Further issues with the standard cosmological model

Dark matter

New particles seem to be elusive in laboratories and in direct detection.

No WIMPs?

No MACHOs?

Standard Model of Particles extremely robust.

Dark Energy

A new fundamental fluid?

Modification of gravity at IR scales?

Inflation at UV scales and DE at IR scales: acceleration at different scales.
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The H0 tension

Another problem that compromises our understanding of the cosmic speed up
concerns the discrepancy between the model-dependent and the direct measurements
of the present expansion rate of the universe. Using the period-luminosity relation for
Cepheids to calibrate a number of secondary distance indicators such as SNe Ia, Riess
et al. (2019) estimate:

H0 = (74.03± 1.42) km s−1 Mpc−1

This value is in 3.5σ tension with that of the CMB-Planck 2018 ΛCDM model:

H0 = (66.88± 0.92) km s−1 Mpc−1

The tension is not confined
exclusively to the Planck results.

The constraints on H0 and Ωm
converge to the Planck values as
more data are included.

If the difference between Planck and
the R19 measurements of H0 is
caused by new physics, then it is
unlikely to be through some change
to the late-time distance-redshift
relation.

[Planck Collaboration (2018)]
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How to go beyond? Two main possibilities

Barotropic unified models of dark energy and dark matter

A first prototype: Chaplygin gas and its extensions:

P = −A
ρ
, P = Bργ − A

ρα
.

Logotropic dark energy models

P = −σ log ρ.

Alternatives to General Relativity

Extensions of Einstein’s gravity

R→ f(R), R→ f(R,G), R→ f(R,�R), R→ Scalar-Tensor.

Modified gravity means choosing the ”right invariant”: curvature R,
torsion T , non-metricity Q.

R→ T, Q T → f(T ), Q→ f(Q).

Big issue: Solving the concordance paradigm at UV and IR scales.
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A minimal approach: A time-evolving equation of state. The CPL model

H(a) = H0

√
Ωm

a3
+ ΩDE exp

{
−3

∫ a

1
[1 + wDE(a′)] d ln a′

}
A simple parametrization of w(a) is obtained by a first-order Taylor expansion:

wDE = w0 + wa(1− a)

This is the Chevallier-Polarski-Linder (CPL) model, which well-behaves from
very high redshift (w(1) = w0 + wa) to the present epoch (w(0) = w0). Such
a parametrization is capable of reproducing with high accuracy the EoS of
many scalar fields, as well as the resulting distance-redshift relations.

Combining CMB, SN, BAO and lo-
cal H0 measurements:

w0 = −1.007± 0.089

wa = −0.222± 0.407

These results are consistent with the
cosmological constant model (w0 =
−1, wa = 0), indicating no evi-
dence for evolution of the dark en-
ergy equation of state.

[Scolnic et al., ApJ, 859, 101 (2018)]
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Constraints on the wCDM model

Constraints on the CPL model

[Scolnic et al., ApJ, 859, 101 (2018)]
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Unified Dark Energy Models

The idea is to combine Dark Matter and Dark Energy behaviours under
the same standard without asking for their fundamental counterparts.

Dark Matter means the clustering properties of large scale structure.

Dark Energy means reproducing the accelerated behaviour of the Hubble
flow.

The goal is reconstructing the cosmic history matching decelerated
(matter dominance) and accelerated (dark energy dominance) behaviours
at any redshift.

Using cosmography at late (z ' 0) and early (z � 0) epochs.
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The case of unified Anton-Schmidt dark energy

Consider crystalline solid’s pressure under isotropic deformation in the Debye
approximation:

P (V ) = −β
(
V

V0

)− 1
6
−γG

ln

(
V

V0

)
V0 is the equilibrium volume of the crystal;

β = −V0

(
dP

dV

)
V=V0

is the bulk modulus at V0;

γG =
∂ ln θD

∂ lnV
is the Grüneisen parameter;

θD =
~ωD
kB

is the Debye temperature, ωD is the maximum vibrational frequency

of a solid’s atoms.

γG < −
1

6
:


V < V0 , vanishing pressure, matter-dominated phase

V = V0 , transition epoch

V > V0 , negative pressure, accelerated phase.

A single fluid obeying the Anton-Schmidt EoS can describe the whole universe’s

evolution without the need of the cosmological constant!

[Anton, Schmidt, Intermetallics, 5, 449 (1997)]

[Capozziello, D’Agostino, Luongo, PDU, 20, 1 (2018)]
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The case of unified Anton-Schmidt dark energy

Recast Anton-Schmidt’s EoS in cosmological quantities, i.e. V ∝ ρ−1

P (ρ) = A

(
ρ

ρ∗

)−n
ln

(
ρ

ρ∗

)
A ∝ β > 0;

n = −
1

6
− γG;

ρ∗ is a reference density;

n = 0 =⇒ Logotropic cosmological model [Chavanis, PLB, 758, 59 (2016)]

Integrating the first law of thermodynamics for an adiabatic fluid:

ε = ρc2 −
[

A

n+ 1

(
ρ

ρ∗

)−n
ln

(
ρ

ρ∗

)
+

A

(n+ 1)2

(
ρ

ρ∗

)−n]

First term: rest-mass energy, mimics (baryonic + dark) matter (εm).

Second term: internal energy, mimics dark energy.

εm = ρc2

εde = −
A

n+ 1

(
ρ

ρ∗

)−n
ln

(
ρ

ρ∗

)
−

A

(n+ 1)2

(
ρ

ρ∗

)−n
ρ� 1: εm dominates and, for n < 0, P � ε

ρ� 1: εde dominates and, for n < 0, P → −K (K > 0)

[Capozziello, D’Agostino, Luongo, PDU, 20, 1 (2018)]

Salvatore Capozziello Modified Gravity vs Dark Energy



The case of unified Anton-Schmidt dark energy

Evolution of the energy density terms (ρ ∝ a3):

εm = εm0a
−3

εde = εde,0a
3n +

3A

n+ 1

(
ρm0

ρ∗

)−n
a3n ln a

with

εm0 = ρm0c
2

εde,0 = −
A

n+ 1

(
ρm0

ρ∗

)−n
ln

(
ρm0

ρ∗

)
−

A

(n+ 1)2

(
ρm0

ρ∗

)−n
Hubble expansion rate:

H2(a) = H2
0

[
Ωm0

a3
+ (1− Ωm0)(1 + 3B ln a)a3n

]
where

B =
A

n+ 1

(
ρm0

ρ∗

)−n 1

εc(1− Ωm0)

n = 0 =⇒ B is the logotropic temperature.

n = B = 0 =⇒ ΛCDM model.

[Capozziello, D’Agostino, Luongo, PDU, 20, 1 (2018)]
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The case of unified Anton-Schmidt dark energy

Effective EoS parameter:

w = −
(1 − Ωm0) [B + (n+ 1)(1 + 3B ln a)] a3n

Ωm0a−3 + (1 − Ωm0) (1 + 3B ln a) a3n

Deceleration parameter:

q =
Ωm0a

−3 − (1 − Ωm0)ηa3n

2 [Ωm0a−3 + (1 − Ωm0)(1 + 3B ln a)a3n]

where

η = 3(n+ B) + 3B(3n+ 2) ln a+ 2

[Capozziello, D’Agostino, Luongo, PDU, 20, 1 (2018)]

Salvatore Capozziello Modified Gravity vs Dark Energy



The case of unified Anton-Schmidt dark energy

Parameter H0+SN OHD BAO SN+OHD+BAO

H0 70 64.53 +8.86
−6.81 62.37 +4.09

−3.80 65.67 +1.75
−1.78

Ωm0 0.107 +0.111
−0.128 0.242 +0.065

−0.061 0.272 +0.051
−0.056 0.286 +0.034

−0.036

n −0.382 +0.239
−0.170 −0.251 +0.699

−0.590 −0.336 +0.315
−0.283 −0.147 +0.113

−0.107

rd - - 142.9 +6.9
−6.6 144.6 +3.5

−3.3

M −19.07 +0.03
−0.02 - - −19.18 +0.05

−0.06

∆M −0.075 +0.021
−0.021 - - −0.077 +0.021

−0.019

α 0.121 +0.006
−0.006 - - 0.121 +0.006

−0.006

β 2.559 +0.067
−0.068 - - 2.565 +0.068

−0.066

Figure: 68% confidence level constraints on the Anton-Schmidt’s parameters.

[Capozziello, D’Agostino, Luongo, PDU, 20, 1 (2018)]]
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Modified Theories of Gravity

Instead of searching for new particles, we can extend or modify GR.

Dark Energy and Dark Matter as geometric effects at infrared scales.

Extended Gravity means that GR is reproduced in a given regime, e.g.
f(R)→ R.

Modified Gravity means that standard GR could not be reproduced.

Teleparallel Equivalent General Relativity (TEGR), gravitational field is
represented by torsion T instead of curvature R, e.g. f(T )→ T .

Symmetric Teleparallel Equivalent General Relativity (STEGR),
gravitational field is represented by non-metricity Q instead of curvature
R, e.g. f(Q)→ Q.

Cosmography + GWs could discriminate for New Physics.
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A roadmap from GWs

 
5
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The geometrical Trinity of Gravity

Teleparallel geometry: Rαβµν ≡ 0

Torsion-free geometry: Tαµν ≡ 0

Riemann-Cartan geometry: Qαµν ≡ 0

GR: Qαµν ≡ 0, Tαµν ≡ 0

TEGR: Rαβµν ≡ 0, Qαµν ≡ 0

STEGR: Rαβµν ≡ 0, Tαµν ≡ 0

Minkowski space:
Rαβµν ≡ 0, Tαµν ≡ 0, Qαµν ≡ 0

[Beltran Jimenez, Heisemberg, Koivisto, Universe, 5, 173 (2019)]

[Capozziello, De Falco, Ferrara, arXiv:2208.03011, to appear in EPJC (2022)]
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The geometrical Trinity of Gravity

Curvature: causes the parallel
transport along a closed curve to
be non-trivial, i.e., to change the
transported vector.

Torsion: the parallel transport is
not symmetric under exchanging
the transported vector and the
direction of transport.

Non-metricity: the length of the
vector, as measured by the metric,
changes along the transport.

[Bahamonde et al., arXiv:2106.13793 (2021)]
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The case of f(R) gravity

Action:

S =

∫
d4x
√
−g
[
f(R)

2
+ Lm

]
Varying the action with respect to gµν :

Rµν −
1

2
gµνR = T (m)

µν + T (curv)
µν

Matter energy-momentum tensor:

T (m)
µν =

−2

f ′
√
−g

δ(
√
−g Lm)

δgµν
, f ′ ≡ df

dR

Effective curvature energy-momentum tensor:

T (curv)
µν =

1

f ′

[
1

2
gµν(f −Rf ′) + (∇µ∇ν − gµν�)f ′

]
Flat FLRW metric:

ds2 = dt2 − a(t)2δijdx
idxj

Relation between the Ricci scalar and the Hubble parameter:

R = −6(Ḣ + 2H2)
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The case of f(R) gravity

Matter energy-momentum tensor for a perfect fluid:

T (m)
µν = diag(ρ,−p,−p,−p)

Modified Friedmann equations:

H2 =
1

3

[
1

f ′
ρm + ρcurv

]
2Ḣ + 3H2 = −pm

f ′
− pcurv

ρcurv =
1

f ′

[
1

2
(f −Rf ′)− 3HṘf ′′

]
pcurv =

1

f ′

[
2HṘf ′′ + R̈f ′′ + Ṙ2f ′′′ − 1

2
(f −Rf ′)

]
Effective dark energy given by curvature:

wde ≡
pcurv
ρcurv

= −1 +
R̈f ′′ + Ṙ2f ′′′ −HṘf ′′

(f −Rf ′)/2− 3HṘf ′′

Assuming matter as dust:

pm = 0 , ρm =
ρm0

a3
= 3H2

0 Ωm0(1 + z)3
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Among these several possibilities, the problem of cosmic
evolution should be addressed by a model-independent
approach. Cosmography could be useful to this aim because
it is based only on the convergence of polynomials.

[see S. Weinberg, ”Gravitation” (1972)]
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A model-independent approach: The cosmography

Taylor expansion of the scale factor (assuming flat FLRW universe):

a(t) = 1 +

∞∑
k=1

1

k!

dka

dtk

∣∣∣∣
t=t0

(t− t0)k

Cosmographic series:

H(t) ≡ 1

a

da

dt
, q(t) ≡ − 1

aH2

d2a

dt2

j(t) ≡ 1

aH3

d3a

dt3
, s(t) ≡ 1

aH4

d4a

dt4

Luminosity distance:

dL(z) = (1 + z)

∫ z

0

dz′

H
=

1

H0

(
c1z + c2z

2 + c3z
3 + c4z

4)+O(z5)

Hubble expansion rate:

H(z) =

[
d

dz

(
dL(z)

1 + z

)]−1

= H0

[
1 +H(1)z +H(2) z

2

2
+H(3) z

3

6

]
+O(z4)

H(1) = 1 + q0 , H
(2) = j0 − q2

0 , H
(3) = 3q2

0 + 3q3
0 − j0(3 + 4q0)− s0

[Cattoen, Visser, PRD, 78, 063501 (2008)]

[Capozziello, Lazkoz, Salzano, PRD, 84, 124061 (2011)]
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Standard cosmography vs rational polynomials

Limits of standard cosmography:

the radius of convergence of the Taylor series is restricted to |z| < 1;

if cosmological data for z > 1 are used, the Taylor series does not provide a
good approximation of the luminosity distance due to its divergent
behaviour;

finite truncations cause errors propagation that may result in possible
misleading outcomes.

Advantages of rational polynomials:

they extend the radius of convergence of Taylor series;

they can better approximate situations at high-redishift domains;

the series can be modelled by choosing appropriate orders depending on
each case of interest.

[Capozziello, D’Agostino, Luongo, MNRAS, 494, 2576 (2020)]
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Cosmography with Padé polynomials

Series expansion of a generic function: f(z) =

∞∑
k=0

ckz
k, ck = f (k)(0)/k!

(N,M) Padé polynomial:

PN,M (z) =

N∑
n=0

anz
n

1 +
M∑
m=1

bmz
m

,



PN,M (0) = f(0)

P ′N,M (0) = f ′(0)

...

P
(N+M)
N,M (0) = f (N+M)(0)

N +M + 1 unknown coefficients:

∞∑
k=0

ckz
k =

∑N
n=0 anz

n

1 +
∑M
m=1 bmz

m
+O(zN+M+1)

(1 + b1z+ . . .+ bMz
M )(c0 + c1z+ . . .) = a0 +a1z+ . . .+aNz

N +O(zN+M+1)

(N,M) Padé approximation of the luminosity distance:

dL(z) ≈ PN,M (z,H0, q0, j0, s0, . . .)

[Capozziello, Ruchika, Sen, MNRAS, 484, 4484 (2019)]
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Taylor vs Padé
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The Taylor polynomials T3, T4 and
T5 rapidly diverge from the exact
ΛCDM curve as z > 2.

Padé polynomials P11, P13 and P23

give spurious singularities when used
to approximate the ΛCDM model.

The Padé functions P21, P22 and P32

fairly approximate the exact ΛCDM

luminosity distance over the whole

interval considered.
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H0 dL

LCDM T5 P14

P32 P23

P41

[Aviles et al., PRD, 87, 064025 (2014)]
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Cosmography with Chebyshev polynomials

Chebyshev polynomials of the first kind:

Tn(z) = cos(nθ) , n ∈ N0 , θ = arccos(z)

They form an orthogonal set with respect to the weighting function
w(z) = (1− z2)−1/2 in the domain |z| ≤ 1:∫ 1

−1

Tn(z) Tm(z) w(z) dz =

π , n = m = 0

π

2
δnm , otherwise

Recurrence relation:

Tn+1(z) = 2zTn(z)− Tn−1(z)

Chebyshev series of a generic function f(z):

f(z) =

∞∑
k=0

′ckTk(z)

where
∑′ means that the first term in the sum must be divided by 2, and

ck =
2

π

∫ 1

−1

g(z) T (z) w(z) dz

being g(z) the Taylor series of f(z) around z = 0.
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Cosmography with Chebyshev polynomials

Construct the (n,m) rational Chebyshev approximation of f(z):

Rn,m(z) =

n∑
i=0

′ aiTi(z)

m∑
j=0

′ bjTj(z)

Requiring f(z)−Rn,m(z) = O(Tn+m+1):
ai =

1

2

m∑
j=0

′ bj(ci+j + c|i−j|) = 0 , i = 0, . . . , n

m∑
j=0

′ bj(ci+j + c|i−j|) = 0 , i = n+ 1, . . . , n+m

Generalization to z ∈ [a, b]: z =
a(1− cos θ) + b(1 + cos θ)

2

T [a,b]
n (z) = Tn

(
2z − (a+ b)

b− a

)
which are orthogonal with respect to w[a,b] = [(z − b)(b− z)]−1/2.

[Capozziello, D’Agostino, Luongo, MNRAS, 476, 3924 (2018)]
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Comparison among different cosmographic techniques

Figure: (2,1) rational Chebyshev
approximation of the luminosity
distance for the ΛCDM model
with the correspondent Padé and
Taylor approximations.

Parameter
Taylor Padé Rational Chebyshev

Mean 1σ R.E. Mean 1σ R.E. Mean 1σ R.E.

H0 65.80 +2.09
−2.11 3.19% 64.94 +2.11

−2.02 3.17% 64.95 +1.89
−1.94 2.95%

q0 −0.276 +0.043
−0.049 16.8% −0.285 +0.040

−0.046 15.1% −0.278 +0.021
−0.021 7.66%

j0 −0.023 +0.317
−0.397 1534% 0.545 +0.463

−0.652 102% 1.585 +0.497
−0.914 44.5%

Table: 68% confidence level constraints and relative errors from the MCMC analysis of
SN+OHD+BAO data for the fourth-order Taylor, (2,2) Padé and (2,1) rational
Chebyshev polynomial approximations of the luminosity distance.

[Capozziello, D’Agostino, Luongo, MNRAS, 476, 3924 (2018)]
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Cosmographic reconstruction of f(R) gravity

Convert the derivatives:

d

dt
−→ −(1 + z)H

d

dz
,

∂

∂R
−→ 1

6

[
(1 + z)H2

z +H (−3Hz + (1 + z)Hzz)
]−1 d

dz
.

Combine first Friedmann equation and R = −6(Ḣ + 2H2):

H2fz =
[
− (1 + z)H2

z +H
(
3Hz − (1 + z)Hzz

)]
×
[
− 6H2

0 (1 + z)3Ωm0 − f

−
Hfz (2H − (1 + z)Hz)

(1 + z)H2
z +H (−3Hz + (1 + z)H2

zz)
−

(1 + z)H2[
(1 + z)H2

z +H
(
− 3Hz + (1 + z)Hzz

)]2×(
fzz
(
(1 + z)H2

z +H(−3Hz + (1 + z)Hzz)
)

+ fz
(
2H2

z − 3(1 + z)HzHzz

+H(2Hzz − (1 + z)Hzzz)
))]

.

Assuming f ′(R0) = 1 (Geff = GN/f
′(R)), the initial conditions are:

f0 = R0 + 6H2
0 (Ωm0 − 1) , fz

∣∣
z=0

= Rz
∣∣
z=0

.
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Cosmographic reconstruction of f(R) gravity

Bounds on cosmographic parameters

(2,1) Padé approximation:


h = 0.7064+0.0277

−0.0263

q0 = −0.4712+0.1224
−0.1106

j0 = 0.593+0.216
−0.210

We fix Ωm0 = 0.3

R < 0 =⇒ f(R) < 0 =⇒ f(z) < 0 consistent with upper bounds values
of cosmographic parameters.
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Cosmographic reconstruction of f(R) gravity

Best analytical match for f(z):

[Capozziello, D’Agostino, Luongo, JCAP, 1805, 008 (2018)]
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Cosmographic reconstruction of f(R) gravity

Use R = −6(Ḣ + 2H2) with H2,1(z) to get R(z) .

Invert R(z) and plug into f(z) = Az + Bz3eCz to obtain f(R) .

[Capozziello, D’Agostino, Luongo, JCAP, 1805, 008 (2018)]
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Viability conditions for f(R) models

Avoid negative values of Geff =
GN
f ′(R)

:

f ′(R) > 0 , R ≥ R0 > 0

Constraints from tests of gravity in the solar system, consistency with
matter-dominated epoch and stability of cosmological perturbations:

f ′′(R) > 0 , R ≥ R0 > 0

Constraints from CMB observations:

f ′(R) −→ 1 , R� 1

[Olmo, PRD, 72, 083505 (2005)]

[Hu, Sawicki, PRD, 76, 064004 (2007)]

[Amendola, Gannouji, Polarski, Tsujikawa, PRD, 75, 083504 (2007)]
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Viability conditions for f(R) models

Relaxing the assumption f ′(R0) = 1:

f0 = f ′(R0)(6H2
0 +R0)− 6H2

0 Ωm0

fz
∣∣
z=0

= f ′(R0) Rz
∣∣
z=0

[Capozziello, D’Agostino, Luongo, JCAP, 1805, 008 (2018)]
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Taylor vs Padé

3rd-order Taylor approximation:


h = 0.7253+0.0353

−0.0351

q0 = −0.6642+0.2050
−0.1963

j0 = 1.223+0.644
−0.664

s0 = 0.394+1.335
−0.731

[Capozziello, D’Agostino, Luongo, JCAP, 1805, 008 (2018)]
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Comparison between f(R) gravity and ΛCDM

Figure: Comparison among the
ΛCDM action and the f(R)
reconstructed actions using the
Padé and the rational Chebyshev
approximations.

Figure: Comparison among the
effective equation of state
parameter for the ΛCDM model,
the Padé and the rational
Chebyshev reconstructions.

[Capozziello, D’Agostino, Luongo,

GRG, 51, 2 (2019)]
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Conclusions and perspectives

Cosmography is a procedure to reconstruct the Universe expansion in a
model-independent way. The ΛCDM can be assumed as a ”prior” model
[Capozziello, Nesseris, Perivolaropoulos , JCAP, 0712, 009 (2007)].

Adopting rational polynomials in cosmography allows us to frame the late-time
accelerated expansion of the Universe with an accuracy greater than the
standard Taylor approach.

Calibration orders of Padé polynomials and rational Chebyshev polynomials are
compared with data: Chebyshev reduces systematics.

MOG cosmography indicates departures from the standard ΛCDM model,
showing that the EoS is slightly evolving with respect to cosmic time.

Cosmography as a IR tool to discriminate theories. UV probes from Lorentz
Invariance and Equivalence Principle. Main role of GWs and Multimessengers.

What next? Extensions to very high z: High-redshift cosmography.

What next? Comparisons with the Cosmic Microwave Background
observations.

What next? The issue of Hubble tension. New Physics or lack of data?

What next? Cosmography by GWs and standard sirens.
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