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The standard cosmological model

Theoretical foundation: The Cosmological Principle
@ The Universe is spatially isotropic:

[Planck Collaboration (2018)]
@ The Universe is homogeneous at large scales:

s Galoxy Redshift Survey

@ The Universe is expanding.
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The standard cosmological model

o Friedman equations:

@ Energy conservation:

p+3H(p+p) =0, p=> pi

o Equation of state (EoS): w = p/p

o Densities of the cosmic species: p; x g~ 3w

pi +3H(1 4 wi)p; =0

o Normalized density parameters:

81G —k
G=ggae = gEe %=1

i
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The cosmological constant

GR + cosmological constant:

Guv + g\ = 870G T,

@ Friedmann equations (with A):

G kA

H* =", 2 4=

3 P2t
a 4G A
o __ =2 3 et
o 3 (P+3p)+ 3

o Cosmological constant EoS:
wy = —1 - A
AT P PAT g T T

Hubble expansion rate:

H(2) = Ho/Qur(1 + 2)* + Qo (14 2)3 + Qi (1 + 2)2 + Q4
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The concordance paradigm

Q= pi/pCRlTEC/\L
QromaL =

Heavy Elements:

Neutrinos (v):
/ Q=0.0047
Cosmic Pie/
Stars:
0Q=0.005

Free H
& He:
0=0.04

Cold Dark Matter:
Q=025

Dark Energy (A):
0=0.70
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The cosmological constant problem

Huge numbers

@ Energy scales (units of c = h = kp = 1):
Mp; =G Y?~ 10" GeV, Hy~ 107" GeV
@ FLRW cosmology:
pn = AMBZ; ~ HZMp, ~ 107%° Gev*
@ Quantum field theory:
Pvac ~ Mp; ~ 107 GeV*'  puac ~ 102 p,

Coincidence

o Very different evolution histories:

Q
Da _pa 8
Qi pm

@ A fine tuning is needed to explain observations:

Qpa ~ 0.7, O ~0.3
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Further issues with the standard cosmological model

Dark matter
@ New particles seem to be elusive in laboratories and in direct detection.
e No WIMPs?
o No MACHOs?

o Standard Model of Particles extremely robust.

Dark Energy
@ A new fundamental fluid?
@ Modification of gravity at IR scales?

@ Inflation at UV scales and DE at IR scales: acceleration at different scales.
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Another problem that compromises our understanding of the cosmic speed up
concerns the discrepancy between the model-dependent and the direct measurements
of the present expansion rate of the universe. Using the period-luminosity relation for
Cepheids to calibrate a number of secondary distance indicators such as SNe la, Riess
et al. (2019) estimate:

Ho = (74.03 + 1.42) km s~! Mpc~!
This value is in 3.50 tension with that of the CMB-Planck 2018 ACDM model:

Hp = (66.88 + 0.92) km s~! Mpc~?

.. . 76 -
@ The tension is not confined
exclusively to the Planck results. _ Riess et al. (2018)
. 772 1
@ The constraints on Hg and €2, Ig_
converge to the Planck values as =
more data are included. I, 98] N
. £
@ If the difference between Planck and X<
the R19 measurements of Hy is T 64 7 ga0-PantheontD/H BBN
caused by new physics, then it is
unlikely to be through some change 60 4 BACPantheonD/H BEN+Ouc
. . . Planck TT,TE,EE+lowE
to the late-time distance-redshift o
. T T T T
relation. 0.24 0.28 0.32 0.36 0.40
[Planck Collaboration (2018)] Qm
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How to go beyond? Two main possibilities

Barotropic unified models of dark energy and dark matter
@ A first prototype: Chaplygin gas and its extensions:

p=_2 P:Bp”—i.
P pe

@ Logotropic dark energy models
P = —ologp.

Alternatives to General Relativity

@ Extensions of Einstein's gravity

R— f(R), R— f(R,G), R— f(R,0R), R — Scalar-Tensor.

o Modified gravity means choosing the "right invariant”: curvature R,
torsion 7", non-metricity Q).

R—=T,Q T— f(T), Q—f(Q):

Big issue: Solving the concordance paradigm at UV and IR scales.
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A minimal approach: A time-evolving equation of state. The CPL model

Q a
H(a):HO\/a;n +QDEeXp{—3A [1+wDE(a’)]d1na’}

A simple parametrization of w(a) is obtained by a first-order Taylor expansion:
wpE = wo + wae(l — a)

This is the Chevallier-Polarski-Linder (CPL) model, which well-behaves from

very high redshift (w(1) = wo + wa) to the present epoch (w(0) = wop). Such

a parametrization is capable of reproducing with high accuracy the EoS of

many scalar fields, as well as the resulting distance-redshift relations.

Combining CMB, SN, BAO and lo-
cal Hyp measurements:

wo = —1.007 £ 0.089 SN+CMB+BAO+HO
we = —0.222 4 0.407

These results are consistent with the
cosmological constant model (wo =
—1, we = 0), indicating no evi-
dence for evolution of the dark en-
ergy equation of state.

120 -1.05 -0.90 -0.75
[Scolnic et al., ApJ, 859, 101 (2018)] wy
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Constraints on the wCDM model

Sample w Qo Ho
CMB+BAO —0.991 £ 0.074 0.312+0.013 67.508 £+ 1.633
CMB+HO —1.188 £ 0.062 0.265+0.013 73.332 +1.729
CMB+BAO+HO —1.119 £ 0.068 0.289 £0.011 70.539 £ 1.425
SN+CMB —1.026 £0.041 0.307 £0.012 68.183+£1.114
SN+CMB+BAO —1.014 £ 0.040 0.307 £0.008 68.027 £ 0.859
SN+CMB+HO0 —1.056 £ 0.038 0.293 +£0.010 69.618 £ 0.969
SN+CMB+BAO+HO | —1.047 +0.038  0.299 £ 0.007 69.013 = 0.791
Constraints on the CPL model
Sample Wo Wa Qm Ho
CMB+BAO —0.616 +0.262 —1.108 £0.771 0.343 +0.025 64.614 + 2.447
CMB-+HO —1.024 +£0.347 —0.789 +1.338 0.265+0.015 73.397 £+ 1.961
CMB-+BAO+HO —0.619 £ 0.270 —1.098 £0.781 0.343 £0.026 64.666 + 2.526
SN-+CMB —1.009 £ 0.159 —0.129 £0.755 0.308 £ 0.018 68.188 £ 1.768
SN+CMB+BAO —0.993 £ 0.087 —0.126 £0.384 0.308 +0.008 68.076 + 0.858
SN+4+CMB+HO0 —0.905+0.101 —0.742 +£0.465 0.287 £0.011 70.393 + 1.079
SN+CMB+BAO+HO | —1.007 & 0.089 —0.222 £0.407 0.300 & 0.008 69.057 £ 0.796

[Scolnic et al., ApJ, 859, 101 (2018)]

Salvatore Capozziello Modified Gravity vs Dark Energy



Unified Dark Energy Models

@ The idea is to combine Dark Matter and Dark Energy behaviours under
the same standard without asking for their fundamental counterparts.

o Dark Matter means the clustering properties of large scale structure.

o Dark Energy means reproducing the accelerated behaviour of the Hubble
flow.

@ The goal is reconstructing the cosmic history matching decelerated
(matter dominance) and accelerated (dark energy dominance) behaviours
at any redshift.

@ Using cosmography at late (z ~ 0) and early (z > 0) epochs.
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The case of unified Anton-Schmidt dark energy

Consider crystalline solid’s pressure under isotropic deformation in the Debye

approximation:
_1_

() ()

@ V) is the equilibrium volume of the crystal;
dP
e B=-W (—) is the bulk modulus at Vj;
av /v_vy,
Olnép
o = is the Griineisen parameter;
7T gy P
e Op = D is the Debye temperature, wp is the maximum vibrational frequency

B
of a solid’s atoms.

V < Vi , vanishing pressure, matter-dominated phase
Yg < —=:¢ V =V, transition epoch
V' > Vi , negative pressure, accelerated phase.

A single fluid obeying the Anton-Schmidt EoS can describe the whole universe's
evolution without the need of the cosmological constant!
[Anton, Schmidt, Intermetallics, 5, 449 (1997)]
[Capozziello, D'Agostino, Luongo, PDU, 20, 1 (2018)]
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The case of unified Anton-Schmidt dark energy

Recast Anton-Schmidt's EoS in cosmological quantities, i.e. V oc p~—!

ro-a(2) s 2)

@ Ax >0;
o 1
n=-—-—ya
6 ale

@ p. is a reference density;
@ n = 0 = Logotropic cosmological model [Chavanis, PLB, 758, 59 (2016)]
Integrating the first law of thermodynamics for an adiabatic fluid:

() (L) ot (B)]

First term: rest-mass energy, mimics (baryonic + dark) matter (ey,).

€e=pc® —

@ Second term: internal energy, mimics dark energy.

€m = pc2

S0 G are ()
€ = — —_ n|l—)— —— | —
T T\ ps (n+1)2 \ ps
p > 1. €y dominates and, forn <0, P K €
p < 1: €qo dominates and, forn < 0, P — —K (K > 0)

[Capozziello, D'Agostino, Luongo, PDU, 20, 1 (2018)]




The case of unified Anton-Schmidt dark energy

@ Evolution of the energy density terms (p oc a?):

€Em = emoof3

3A -
€de = ede,0a3n + (PmO) a®Ina
n+1 Px

with

€m0 = Pmoc?
€d _ _ A <pm0)_n1n (Pmo)_ A (Pmo)_n
T T\ p. P (n+1)2 \ pu

@ Hubble expansion rate:

Qm
H?%(a) = H? [TSO + (1 —Qmo)(1+3B lna)a3”i|

B A (pm())*" 1
T n+1 P €c(1 — Qmo)

@ n =0 = B is the logotropic temperature.
@ n=B=0=— ACDM model.

where

[Capozziello, D'Agostino, Luongo, PDU, 20, 1 (2018)]

Salvatore Capozziello Modified Gravity vs Dark Energy



The case of unified Anton-Schmidt dark energy

Qo =03, B=0.1

@ Effective EoS parameter: 02

(1= Qmo) [B+ (n+1)(1+3Blna)]a®  f S 1
Qmoa=3 + (1 — Qmo) (1 +3B1na)a3” \

w -06F ]

@ Deceleration parameter:

_ Qm0a73 - (1 - Qmﬂ)nasn

T 2[Qmoa"3 4+ (1 — Qmo)(1 + 3B1Ina)adn]
where a

n=3(n+ B)+3B(Bn+2)lna+2

q

[Capozziello, D'Agostino, Luongo, PDU, 20, 1 (2018)]
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The case of unified Anton-Schmidt dark energy

Parameter Hy+SN OHD BAO SN+OHD+BAO
Ho 70 64.53 1530 62.37 T35 65.67 1175
Qo 0.107 *0is 0242 X006 0272 X008 0.286 TUTE
n —0.382 70239 _0.251 0990 _0.336 10315 _0.147 FO118
T - - 142.9 5§ 144.6 +33
M ~19.07 £33 - - ~19.18 +9:05
Awm —0.075 15051 - - —0.077 £9:921
o 0.121 £5:068 - - 0.121 9:9%
s 2.559 10008 - - 2.565 +0:098

Figure: 68% confidence level constraints on the Anton-Schmidt’s parameters.

[Capozziello, D'Agostino, Luongo, PDU, 20, 1 (2018)]]
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Modified Theories of Gravity

@ Instead of searching for new particles, we can extend or modify GR.
o Dark Energy and Dark Matter as geometric effects at infrared scales.

o Extended Gravity means that GR is reproduced in a given regime, e.g.
f(R) — R.

@ Modified Gravity means that standard GR could not be reproduced.

@ Teleparallel Equivalent General Relativity (TEGR), gravitational field is
represented by torsion T instead of curvature R, e.g. f(T) — T.

e Symmetric Teleparallel Equivalent General Relativity (STEGR),
gravitational field is represented by non-metricity () instead of curvature

R, eg f(Q) — Q.

@ Cosmography + GWs could discriminate for New Physics.
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A roadmap from GWs

Modified gravity roadmap Constrained by

‘:’ GW speed
Mass
Gfas\:wj\t/ye B \ l:l GW dispersion
mg > 0 R .
General ? ) [ 6w damping

Relativity - 3 GW oscillations
ensor

Unique theory
of massless g,.,,

Additional
Field

Break
Assumptions

NorLogal’)
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The geometrical Trinity of Gravity

Teleparallel geometry: R%g,, =0

Teleparallel
Equivalent of GR

Torsion-free geometry: 7%, =0

Teleparallel Graviry
| @ Riemann-Cartan geometry: Qauw =0

o GR: Qopr =0, T%,, =0

Symmerric
Teleparallel |
Equivalenr of GR |

o TEGR: Raﬁuy = 07 Qauu =0

STEGR: R%4,, =0, T, =0

Torsion Free

Minkowski space:
R =0, T%0 =0, Qapr =0

[Beltran Jimenez, Heisemberg, Koivisto, Universe, 5, 173 (2019)]
[Capozziello, De Falco, Ferrara, arXiv:2208.03011, to appear in EPJC (2022)]
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The geometrical Trinity of Gravity

@ Curvature: causes the parallel
transport along a closed curve to
be non-trivial, i.e., to change the

tra nsported vector. '

@ Torsion: the parallel transport is
not symmetric under exchanging
the transported vector and the
direction of transport.

@ Non-metricity: the length of the
vector, as measured by the metric, °
changes along the transport.

[Bahamonde et al., arXiv:2106.13793 (2021)]
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The case of f(R) gravity

o Action:
S = /d‘*:c\/?g [@ +£m]

Varying the action with respect to g,.:

1
Ruw — SR =T 4 T

@ Matter energy-momentum tensor:

7o = =2 /=9 £m) =4
Ve
o Effective curvature energy-momentum tensor:
(curv) 111 ’ ’
Tow = ? igHV(f —Rf)+ (VuVe — g0 f
o Flat FLRW metric:
ds® = dt* — a(t)?6;;da’ da’
@ Relation between the Ricci scalar and the Hubble parameter:

> 2
R=—6(H + 2H?)



The case of f(R) gravity

o Matter energy-momentum tensor for a perfect fluid:
7" = diag(p, —p, —p, —p)
@ Modified Friedmann equations:

111
H2 = g |:Fpm + pcur'u:|
2H+ 3H2 = 7% 7pcu'rv
11 ' S !
Pcurv = ? |:§(f — Rf ) —3HRf :|
1 S pl! > pll 52 pllt 1 !
pcurv:F|:2HRf +Rf +Rf _g(f_Rf):|

o Effective dark energy given by curvature:
_ Peurv ) Rf"+ R2f" — HRf"

Wie =~ = —

Peurv (f —Rf")/2 — 3HRf"

@ Assuming matter as dust:

Pm=0, pm= % — 3H2Qmo(1 + 2)?
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Among these several possibilities, the problem of cosmic
evolution should be addressed by a model-independent
approach. Cosmography could be useful to this aim because
it is based only on the convergence of polynomials.

[see S. Weinberg, " Gravitation” (1972)]
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A model-independent approach: The cosmography

@ Taylor expansion of the scale factor (assuming flat FLRW universe):

> 1 dka k
a(t)zl-f‘ZEW _ (t—to)
k=1 =tg
o Cosmographic series:
1da 1 d%a
H(t) = —— =
®=a 1) =~ i e
1 d%a 1 d*a

i(t) = —= —= t) =
0= 0= g a
@ Luminosity distance:

dL(z):(1+z)/Oz

@ Hubble expansion rate:

H(Z) _ i dL(Z) - - Ho l1 +H(1)Z + H(Q)i + [{(3)273 +O(Z4)
dz \1+ 2 0 2 6
HY =14, H? = jo—q5 , HY =345 +3a5 — jo(3+ 4q0) — 50
[Cattoen, Visser, PRD, 78, 063501 (2008)]
[Capozziello, Lazkoz, Salzano, PRD, 84, 124061 (2011)]
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Standard cosmography vs rational polynomials

o Limits of standard cosmography:

o the radius of convergence of the Taylor series is restricted to |z| < 1;

o if cosmological data for z > 1 are used, the Taylor series does not provide a
good approximation of the luminosity distance due to its divergent
behaviour;

o finite truncations cause errors propagation that may result in possible
misleading outcomes.

o Advantages of rational polynomials:

o they extend the radius of convergence of Taylor series;
o they can better approximate situations at high-redishift domains;

o the series can be modelled by choosing appropriate orders depending on
each case of interest.

[Capozziello, D'Agostino, Luongo, MNRAS, 494, 2576 (2020)]
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Cosmography with Padé polynomials

@ Series expansion of a generic function: f(z chz , = ) 0)/k!

e (N, M) Padé polynomial:
N Py (0) = f(0)
>_an?" Pl (0) = 1'(0)
Pnoyv(z) = % )

14 mezm
m=1
o N + M + 1 unknown coefficients:

(o] N n
E anZz N+ M
E ept = =m0y O(z 1)

1+ 27]\7{:1 bmz™
( N+M+1)

(1+b12+...+szM)(CO+clz+...) =aptaiz+...+anzY +0(z

P (0) = F 0)

e (N, M) Padé approximation of the luminosity distance:

dL(Z) =~ PN,M(Z7H07q07j07 S0, - - )

[Capozziello, Ruchika, Sen, MNRAS, 484, 4484 (2019)]



Hod,

Taylor

vs Padé

Hod

@ The Taylor polynomials T3, T4 and
Ts rapidly diverge from the exact
ACDM curve as z > 2.

@ Padé polynomials P11, P13 and P»3
give spurious singularities when used
to approximate the ACDM model.

@ The Padé functions P21, Pys and P30
fairly approximate the exact ACDM
luminosity distance over the whole
interval considered.

Salvatore Capozziello
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—Pu

[Aviles et al., PRD, 87, 064025 (2014)]
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Cosmography with Chebyshev polynomials

@ Chebyshev polynomials of the first kind:
Tn(z) =cos(nf) , neNpy, 6 =arccos(z)

@ They form an orthogonal set with respect to the weighting function
w(z) = (1 — 22)~1/2 in the domain |z| < 1

1 T, n=m=20
/ Tn(2) Tin(z) w(z) dz = § .
—1 §5nm , otherwise

@ Recurrence relation:
Tht1(2) = 22T0(2) — Ta-1(2)

@ Chebyshev series of a generic function f(z):
f(z) =) e Ti(z)
k=0
where Y_' means that the first term in the sum must be divided by 2, and

cr = 2 /ﬂg(z) T(z) w(z) dz

™

being g(z) the Taylor series of f(z) around z = 0.



Cosmography with Chebyshev polynomials

e Construct the (n,m) rational Chebyshev approximation of f(z):

Rym(2) = 5
> biTi(2)
§=0
@ Requiring f(2) — Rn,m(2) = O(Thntm+1)
1 .
ai:§ /bj(ci+j+c|,~,j|):0, 1=0,...,n
§=0

Z,bj(ci+j+c\i—j|)207 t=n+1,....,n+m
§=0

o Generalization to z € [a,b]: z = a(1 = c0sf) + b(1 + cosf)

2
2z — (a+b)
T () =T, ( 2
1e0l(z) e
which are orthogonal with respect to wi, 5 = [(z — b)(b — 2)] 72

[Capozziello, D'Agostino, Luongo, MNRAS, 476, 3924 (2018)]



Comparison among different cosmographic techniques

T T T T T T T
6 —— ACDM 1
—— Taylor
—— Padé

—— rational Chebyshev

1 Figure: (2,1) rational Chebyshev
— approximation of the luminosity
distance for the ACDM model
with the correspondent Padé and
Taylor approximations.

Hody, 5

0.0 0.5 1.0 15 20 25 3.0
z
b Taylor Padé Rational Chebyshev
arameter
Mean lo R.E. Mean lo R.E. Mean lo R.E.
H, 65.80 299 18.19% | 64.94 t211 317% | 64.95 159 12.95%
a0 —0.276 19943 1 16.8% | —0.285 19040 115.1% | —0.278 10021 | 7.66%
Jjo —0.023 10317 11534% | 0.545 10253 1102% | 1.585 0297 [44.5%

Table: 68% confidence level constraints and relative errors from the MCMC analysis of

SN+OHD+BAO data for the fourth-order Taylor, (2,2) Padé and (2,1) rational

Chebyshev polynomial approximations of the luminosity distance.
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Cosmographic reconstruction of f(R) gravity

@ Convert the derivatives:

d d

@ +DH

8 1 2 -1d
5z — 6[(1+Z)Hz Y H(-3H. + (l—l—z)sz)} =

o Combine first Friedmann equation and R = —6(H + 2H?):
H%f, = [_ (1+2)H2+H(3H, — (1+ Z)sz)] X [— 6H3 (1 + 2)%Qmo — f

3 Hf, (2H — (14 2)H3) 3 (14 2)H? "
(1+2)H2 + H (=3H= + (1+2)H2.)  [(1+2)H2 + H(—3H. + (14 2)H..)]’

(fo=((U+ 2) B2 + H(=3H + (1 4 2)Hz2)) + [z (2H2 = 3(1 + 2)H. H...

+H@H.. — (1+ z)szz)))] .

@ Assuming f'(Ro) = 1 (Ger = Gn/f'(R)), the initial conditions are:
fo=Ro+6H5(Qmo—1), fo| _ =R:| _, -
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Cosmographic reconstruction of f(R) gravity

Bounds on cosmographic parameters

h = 0.70647 50277

e (2,1) Padé approximation: { qo = —0.471270 1555

jo = 0.59370:31%
o We fix Q0 =0.3

e R<0 = f(R) <0 = f(z) < 0 consistent with upper bounds values
of cosmographic parameters.

500 |- B
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Cosmographic reconstruction of f(R) gravity

o Best analytical match for f(z):

_____ numerical f(z)
500 |-

f(z) = Az + BZ? ¢“*

400

300

200

100

[Capozziello, D'Agostino, Luongo, JCAP, 1805, 008 (2018)]
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Cosmographic reconstruction of f(R) gravity

o Use R = —6(H + 2H?) with Hy1(z) to get R(z) .

o Invert R(z) and plug into f(2) = Az + B2*¢“* to obtain f(R) .

600
500
400

11 300

S SRR R
-400 -300 -200 -100
R

[Capozziello, D'Agostino, Luongo, JCAP, 1805, 008 (2018)]
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Viability conditions for f(R) models

f(R)>0, R>Ry>0
o Constraints from tests of gravity in the solar system, consistency with
matter-dominated epoch and stability of cosmological perturbations:

f'(R)>0, R>Ro>0

o Constraints from CMB observations:

f(R)—1, R>1

[Olmo, PRD, 72, 083505 (2005)]
[Hu, Sawicki, PRD, 76, 064004 (2007)]
[Amendola, Gannouji, Polarski, Tsujikawa, PRD, 75, 083504 (2007)]
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Viability conditions for f(R) models

@ Relaxing the assumption f'(Ro) = 1:

fo = f'(Ro)(6H§ + Ro) — 6H; Qumo
fz|z:0 = f/(RO) Rz}z:O

z
10 8 6 4 20
[ : : ; :
[ Ger/Gy =1
wl T~ oo Gur/Gy = 1.05 |

-------- GerlGy = 1.1

£

1.0 -

[Capozziello, D'Agostino, Luongo, JCAP, 1805, 008 (2018)]
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Taylor vs Padé

h=0.725310:0333

—0.66427929%0

. . qo
@ 3rd-order Taylor approximation:

jo = 1.22370681

s0 = 0.39471:33°

[Capozziello, D'Agostino, Luongo, JCAP, 1805, 008 (2018)]
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Comparison between f(R) gravity and ACDM

0 05 1 15

16T T T T

Figure: Comparison among the
effective equation of state
parameter for the ACDM model,
the Padé and the rational
Chebyshev reconstructions.

[Capozziello, D'Agostino, Luongo,
GRG, 51, 2 (2019)]
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Wet

Figure: Comparison among the
ACDM action and the f(R)
reconstructed actions using the
Padé and the rational Chebyshev
approximations.




Conclusions and perspectives

@ Cosmography is a procedure to reconstruct the Universe expansion in a
model-independent way. The ACDM can be assumed as a " prior” model
[Capozziello, Nesseris, Perivolaropoulos , JCAP, 0712, 009 (2007)].

@ Adopting rational polynomials in cosmography allows us to frame the late-time
accelerated expansion of the Universe with an accuracy greater than the
standard Taylor approach.

@ Calibration orders of Padé polynomials and rational Chebyshev polynomials are
compared with data: Chebyshev reduces systematics.

@ MOG cosmography indicates departures from the standard ACDM model,
showing that the EoS is slightly evolving with respect to cosmic time.

@ Cosmography as a IR tool to discriminate theories. UV probes from Lorentz
Invariance and Equivalence Principle. Main role of GWs and Multimessengers.

@ What next? Extensions to very high z: High-redshift cosmography.

@ What next? Comparisons with the Cosmic Microwave Background
observations.

@ What next? The issue of Hubble tension. New Physics or lack of data?

@ What next? Cosmography by GWs and standard sirens.
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