Phenomenology of 3v oscillations

Vµ V_T

Eligio Lisi (INFN Bari)

Vulcano Workshop 2022 – Elba Island – September 29th, 2022

V₂

Outline:

- The standard 3ν framework
- Oscillation knowns and unknowns
- Impact of non-oscillation physics
- Conclusions

The standard 3v framework

Mixing matrix: CKM \rightarrow **PMNS** (Pontecorvo-Maki-Nakagawa-Sakata)

Mass [squared] spectrum ($E \sim p + m^2/2E + "interaction energy")$

Sketchy 3v overview

3v oscillations probed by different experiments in different channels...

 $\mu \rightarrow \mu$ (Atmospheric) $e \rightarrow e$

MC Best-fit

(LBL Accel)

3

Reconstructed v Energy (GeV)

>5

µ→e

(LBL Accel)

(SBL Reac.)

 $\mu \rightarrow \tau$ (Opera, SK, DC)

LBL = Long baseline (few x 100 km); SBL = short baseline (~1 km)

(a) KamLAND reactor [plot]; (b) Borexino [plot], Homestake, Super-K, SAGE, GALLEX/GNO, SNO; (c) Super-K atmosph. [plot], DeepCore, MACRO, MINOS etc.; (d) T2K (plot), NOvA, MINOS, K2K LBL accel.; (e) Daya Bay [plot], RENO, Double Chooz SBL reactor; (f) T2K [plot], MINOS, NOvA LBL accel.; (g) OPERA [plot] LBL accel., Super-K and IC-CD atmospheric.

... with amplitude and frequency governed by 2 (or 3) leading parameters

5 param.'s known & (over)constrained \rightarrow consistency

Currently: focus on unknown par. & subleading effects, especially CPV via $v_{\mu} \rightarrow v_{e}$ in LBL accel. and atmos. expts and NO/IO mass spectrum via reactor expts + others

How do $v_{\mu} \rightarrow v_{e}$ oscillation searches probe CPV?

For two neutrinos, no CPV:

$$\mathbf{v}_{e}$$
 = $\cos\theta_{12} v_{1} + \sin\theta_{12} v_{2}$

For three neutrinos: new possible CPV phase δ , tested via v versus \overline{v}

$$\dot{\mathbf{v}}_{\mathbf{e}} = \cos\theta_{13} (\cos\theta_{12} v_1 + \sin\theta_{12} v_2) + e^{\pm i\delta} \sin\theta_{13} v_3$$

CPV is a genuine 3v effect \rightarrow all oscillation parameters (known & unknown) are involved/entangled

How do oscillation searches probe mass ordering?

Observe interference effects of oscill. driven by $\pm \Delta m^2$ with oscill. driven by another quantity Q with <u>known sign</u>. Options:

How do oscillation searches probe mass ordering?

Observe interference effects of oscill. driven by $\pm \Delta m^2$ with oscill. driven by another quantity Q with <u>known sign</u>. Options:

 $\begin{array}{ll} {\sf Q} \sim \ \delta m^2 & \mbox{medium-baseline reactors} \ensuremath{\rightarrow}\ JUNO \\ {\sf Q} \sim \ {\sf G}_{\sf F} \ {\sf N}_{\sf e} \ {\sf E} & \mbox{v-matter effects} \ensuremath{\rightarrow}\ atm \ensuremath{\&}\ LBL \mbox{ accel. expt.} \\ [\ {\sf Q} \sim \ {\sf G}_{\sf F} \ {\sf N}_{\sf V} \ {\sf E} & \mbox{v-v collective effects} \ensuremath{\rightarrow}\ core-collapse \ {\sf SN} \] \end{array}$

Additional tool: synergy of $|\Delta m^2|$ data from different experiments, e.g. two or more data from reactor + accelerator + atmospheric (should converge better in the true ordering than in the wrong one) → It makes sense to perform global analyses of all neutrino oscillation data, to squeeze information on subleading 3v effects and to exploit correlations

Useful analysis sequence:

LBL Accel + Solar + KL (KamLAND) minimal set sensitive to all osc. param. δm^2 , Δm^2 , θ_{13} , θ_{23} , θ_{12} , δ , NO/IO

LBL Accel + Solar + KL + SBL Reactor

add sensitivity to Δm^2 , θ_{13} and affect other parameters via correlations

LBL Accel + Solar + KL + SBL Reactor + Atmosph. add sensitivity to Δm^2 , θ_{23} , δ , NO/IO (but: entangled information in atmos.)

$\Delta \chi^2$ statistics adopted for all datasets: N $\sigma = \sqrt{\Delta \chi^2} \rightarrow$

Parameter value

In the following: results from the 2021 global data analysis: "Unfinished fabric of the three neutrino paradigm", Capozzi et al., hep-ph 2107.00532 (similar results from NuFit and Valencia groups in 2021)

+ educated guesses about the impact of unpublished data presented at Neutrino 2022 → need to be checked by future global analyses (work in progress)

Status of known and unknown 3v oscillation parameters, circa 2021

Status of known and unknown 3v oscillation parameters, circa 2021

Focus on the three oscillation unknowns: NO/IO, δ , θ_{23} octant degen.

LBL Acc + Solar + KamLAND

IO favored (~1 σ) δ ~1.5 π (IO), ~ π (NO) θ_{23} octants ~degenerate [confusing T2K-NOvA tension] Focus on the three oscillation unknowns: NO/IO, δ , θ_{23} octant degen.

 θ_{23} octants ~degenerate

NO favored (~1.5 σ) $\delta \sim \pi$ (NO), ~1.5 π (IO) $\theta_{23} \sim 0.57$ favored (~1 σ)

2.0

0.7

Focus on the three oscillation unknowns: NO/IO, δ , θ_{23} octant degen.

 θ_{23} octants ~degenerate

 θ_{23} ~0.57 favored (~1 σ)

 $\theta_{23} \sim 0.46$ favored (~1.6 σ)

...Educated guess on unknowns, after Neutrino 2022

- → presumably >99% CL
- ➔ presumably >90% CL
- \rightarrow presumably flipped to > $\pi/4$

Main impact expected from **new SK atm. data in combination with T2K**, which may win over the T2K-NOvA tension and other small changes [see extra slides]

Wait for IC-DC atm. data and T2K+NOvA joint fit!

Watch for synergy of various |∆m²| measurements: convergence / divergence in true / wrong mass ordering

$(\pm \Delta m^2, \theta_{23})$ pair: 2021 data synergy

SBL reactors prefer higher Δm^2 than LBL accel. (and atmos.) expts. Relative difference is smaller for NO and for non-maximal θ_{23} mixing

NO

10

$(\pm \Delta m^2, \theta_{23})$ pair: 2021 data synergy

SBL reactors prefer higher Δm² than LBL accel. (and atmos.) expts.
 Relative difference is smaller for NO and for non-maximal θ₂₃ mixing
 → Better agreement reached for NO & nonmax θ₂₃ at intermediate Δm²
 → SBL reactor data not sensitive to sign(Δm²) and θ₂₃, but affect their likelihood!

$(\pm \Delta m^2, \theta_{23})$ pair: 2021 data synergy

SBL reactors prefer **higher** Δm^2 than LBL accel. (and atmos.) expts. Relative difference is **smaller** for **NO** and for non-maximal θ_{23} mixing

- → Better agreement reached for NO & nonmax θ_{23} at intermediate Δm^2
- \rightarrow SBL reactor data not sensitive to sign(Δm^2) and θ_{23} , but affect their likelihood!

Near Future: incremental progress from Daya Bay + T2K + NOvA + SK + IC-DC... Farther Future: decisive progress with JUNO + DUNE + HK + IC + KM3...

Outline:

- The standard 3ν framework
- Oscillation knowns and unknowns
- Impact of non-oscillation physics
- Conclusions

Neutrino Interaction Physics

Oscillation phase $\propto \Delta m^2/E \rightarrow E$ -reconstruction uncertainties may bias Δm^2

... and may affect central values and errors of other parameters via correlations

Great effort to improve the situation through dedicated measurements and improved nuclear models, but non-negligible uncertainties remain

"Strong interaction" effects on "weak interaction" physics are ubiquitous...

Need hadron production data, e.g. pA $\rightarrow \pi X$, +theory models to improve estimates of atmos. and acceler. v fluxes and errors

Current understanding of v cross sections at O(GeV) does not match the needs of (next-generation) v expts

Control of nuclear EW response (e.g., form factors) relevant to interpret many low-energy data: coherent scatt., reactor spect., 2β Improved PDFs at low-x via ~forward charm production at LHCb essential to constrain prompt component in UHE v

Progress requires further integration of different Expt+Theo communities: \rightarrow (re)emerging field of "Electroweak Nuclear Physics"

Non-oscillation neutrino mass observables: (m_{β} , $m_{\beta\beta}$, Σ)

 β decay, sensitive to the "effective electron neutrino mass":

 $m_{\beta} = \left[c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2\right]^{\frac{1}{2}}$

Ονββ **decay**: only if Majorana. "Effective Majorana mass": $m_{\beta\beta} = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|$

Cosmology: Dominantly sensitive to sum of neutrino masses:

$$\Sigma = m_1 + m_2 + m_3$$

May provide additional handles to distinguish NO/IO!

Non-oscillation parameter space (2σ) constrained by oscillations:

...on $m_{\ensuremath{\beta}\ensuremath{\beta}}$, starting to cover non-degenerate mass regions

... and on Σ , from a variety of cosmo bounds, with IO "under pressure"

Grand total (oscillations + nonoscillations) for the IO-NO difference

[envelope of conservative, default, aggressive cosmological fits = horizontal lines]

Presumably stronger with 2022 oscill. data. Progress expected on all fronts!

Future data might also bring us beyond 3v and re-shape the field...

Disagreement among future data (barring expt mistakes) might point towards new possibilities:

- Cosmology beyond ACDM
- Alternative DBD mechanisms
- New interactions (NSI)
- New neutrino states ...

Main contender in current v physics: Light sterile v at O(1 eV) scale but... confusing/unconfirmed hints

In any case: generic expectations for new possible v mass state(s)

CONCLUSIONS

Thank you for your attention!

V1 V2 VE

ν_μ ν_τ

Extra slides:

Selected new oscillation results shown at Neutrino 2022

+ personal comments

$(\delta m^2, \theta_{12})$ pair from solar experiments

B. Caccianiga	→ BOREXINO + [revised O, N abundances] independently favor high-Z/X SSM
Y. Koshio	ightarrow SK energy spectrum consistent with low-energy upturn
Y. Koshio	$ ightarrow$ SK D/N asymmetry drives again solar $\delta {f m^2}$ below the KamLAND one, by 1.5σ

Comment #1: Seems an acceptable fluctuation in an overall consistent scenario Comment #2: Minor impact expected on previous estimates for this oscill. parameter pair

$(\Delta m^2, \theta_{13})$ pair from reactor experiments

K.B. Luk \rightarrow Daya Bay improved determinations of both mass-mixing parameters

Comment #1: W.r.t. previous official release: errors reduced by 20% on both parameters Comment #2: DYB best fits shifted by less than 0.3σ wrt previous release \rightarrow robust results Comment #3: Overall $|\Delta m^2|$ value from reactors a bit lower, but still on the "high" side

(Δm^2 , θ_{23}) pair from LBL experiments (mainly from improved analyses rather than new data)

Bronner \rightarrow T2K results with revised cross sections, fluxes, systematics

Using θ_{13} constraint from reactor experiments: $\sin^2(2\theta_{13}) = 0.0861 \pm 0.0027$

Hartnell + posters \rightarrow NOvA results with revised cross sections, interaction models

Comment #1: NOvA constraints basically unchanged; slight increase of $|\Delta m^2|$ in T2K Comment #2: Both T2K and NOvA prefer 2nd octant of θ_{23} (at reactors' θ_{13} value) Comment #3: T2K and NOvA cross-sections: revised separately (not jointly yet)

$(\Delta m^2, \theta_{23})$ pair from atmospheric experiments

Stuttard (IC-DC), Wan (SK) → new atmospheric neutrino data

Wan (SK) → Joint analysis of SK+T2K (including, e.g., common x-sec systematics)

Comment #1: Both IC-DC and SK atmospheric consistent with nearly maximal θ_{23} Comment #2: Combination of SK atmos. + T2K LBL data brings θ_{23} in 2nd octant Comment #3: Both IC-DC and SK prefer the "low" side of $|\Delta m^2|$ Comment #4: Scatter of $|\Delta m^2|$ best fits in react/LBL/atm \rightarrow some impact on NO/IO separation

NO/IO and δ_{CP} overview

T2K and NOvA: still in tension; but no joint analysis yet. IC-DC: IO and δ not discussed yet.

But SK atm. alone, and SK atm. +T2K \rightarrow Increased preference for NO and for sin δ < 0

Comment #1: Seperately revised cross sections have not shed light on T2K vs NOvA tension Comment #2: ... but joint T2K+NOvA analysis with common interaction model still lacking Comment #3: SK and T2K synergy strengthens current hints on NO/IO and δ_{CP} Comment #4: ... but SK speaker admits that *"Results from both experiments exceed sensitivity"*