

Vulcano Workshop 2022 FRONTIER OBJECTS IN ASTROPHYSICS AND PARTICLE PHYSICS

The *not-so-final* results of Borexino

Vulcano Workshop 2022

Frontier Objects in Astrophysics and Particle Physics

Elba Island – 25 Sept. – 1 Oct. 2022

Davide D'Angelo for the Borexino collaboration Università degli Studi di Milano Istituto Nazionale di Fisica Nucleare

Solar neutrino production

Nuclear fusion net reaction: $4H \rightarrow He + 2e^{-} + 2\nu_{e}$

pp – chain

Vulcano 2022 - Borexino results

VS.

Who wins this competition?

- It depends on the <u>temperature</u> and <u>elemental abundance</u> of the star
- In the Sun, the *pp*-chain does 99% of the job
 - CNO solar neutrinos are hard to spot and undetected (before Borexino)
- The CNO cycle becomes dominant above ~ 1.3 M_{\odot}

The Solar metallicity puzzle

- Helioseismology is a great tool to prove solar models.
- Since 2005: a new 3D analysis of spectroscopic data from photosphere indicates lower values of solar metallicity (LZ) by ~20%.
- But solar models reproducing these new LZ values **disagree with** helioseismology data.

v flux	GS98 (HZ)	AGSS09met (LZ)	cm ⁻² s ⁻¹	Δ
рр	5.98 (1±0.006)	6.03 (1±0.005)	x 10 ¹⁰	+0.8%
рер	1.44 (1±0.01)	:0.01) 1.46(1±0.009)	x 10 ⁸	+1.4%
⁷ Be	4.93 (1±0.06)	4.50 (1±0.06)	x 10 ⁹	-8.7%
⁸ B	5.46 (1±0.12)	4.50 (1±0.12)	x 10 ⁶	-18%
¹³ N	2.78 (1±0.15)	2.04 (1±0.14)	x 10 ⁸	-27%
¹⁵ O	2.05 (1±0.17)	1.44 (1±0.16)	x 10 ⁸	-30%

CNO v fluxes are the most sensitive to the Sun metallicity

Metallicity (Z): abundance of elements other than H, He

Solar neutrino spectrum

Solar neutrino spectrum

INFN The Borexino detector **Stainless Steel Sphere** Diameter: 13.7 m 1300 m³ Target **PMTs** 300 ton liquid scintillator 2212 (nominal) x 8" **Pseudocumene (PC)** 35% optical coverage + wavelength shifter (PPO, 1.5 g/l) Scintillator Radon barrier Inner Vessel **Buffer fluid** Diameter: 8.5 m PC + DMP (light quencher) 125 μ m thick nylon **Unmatched radiopurity** Cherenkov muon veto $< 9 \times 10^{-19} \text{ g(Th)/g}$ Diameter: 18 m <8 x 10⁻²⁰ g(U)/g 2000 ton ultra-pure water 208 PMTs (largely above design) Ve

A success built over time

BOREXINO

at Gran Sasso

Proposal for a real time detector for low energy solar neutrinos P. Trincherini C.C.R. Euratom, ISPRA, (VA) - Italy.

G. Alimonti, R. Bassini, <u>G. Bellini</u>, S. Bonetti,
 S. Brambilla, M. Campanella, W. Cavaletti, P. D'Angelo,
 M. di Corato, M. Gianmarchi, D. Giove, D. Giugni, P. Inzani,
 I. Iori, S. Malvezzi, L. Manduci, I. Marno, E. Meroni,
 A. Moroni, L. Perasso, F. Ragusa, G. Ramucci, G. Salmini,
 R. Scardaoni, D. Torretta, V. Torri, P. Ullucci
 Physics Dept. of the University and INFN
 Milano - Italy

T. Kovacs, J. Mitchell, P. Raghavan, <u>R.S. Raghavan</u> AT&T Bell Laboratories Murray Hill NJ - U.S.A.

P. Benetti, B. Bertotti, G. Cecchet, A. De Bari, A. Minoia, L. Pezzotti, A. Perotti Physics Dept. of the University and INFN Occupational Medicine Laboratory of the Univesity Pavia - Italy

B. Alpat, F. Elisei, G. Levi, G. Mantovani F. Masetti, V. Mazzucato Physics Dept. of the University and INFN Perugia - Italy

> R. Steinberg Drexel University Philadelphia PA - U.S.A.

J. Cilc, J. Dostal, Michael Finger, Miroslav Finger, Z. Janout, F. Kubalek, M. Tomasek Charles University, Prague The Czech Technical University, Prague - Czechoslovakia

> F.P. Calaptice Physics Dept., Princeton University Princeton NJ - U.S.A.

1999-2007: construction& commissioning

Borexino data taking campaign (2007-2021)

Solar neutrinos

- ⁷Be: 1st observation + Precise measurement (±5%)
- ▶ *pep*: 1st observation
- ▶ ⁸B: low-threshold measurement
- ► CNO: best upper limit

+ Other studies ...

Borexino data taking campaign (2007-2021)

Solar neutrinos	Solar neutrinos	
 ⁷Be: 1st observation + Precise measurement (±5%) <i>pep</i>: 1st observation ⁸B: low-threshold measurement CNO: best upper limit 	 pp: 1st measurement ⁷Be: Seasonal modulation Simultaneous meas. of low-E solar-ν (pp, pep, ⁷Be, CNO limit) ⁸B: improved low-thrs meas. 	
+ Other studies	+ Other studies	

Phase-I and II results

Complete spectroscopy of the pp-chain

Fundamental test of the LMA-MSW oscillation mechanism

Borexino data taking campaign (2007-2021)

Solar neutrinos	Solar neutrinos Solar neutrinos	
 ⁷Be: 1st observation + Precise measurement (±5%) <i>pep</i>: 1st observation ⁸B: low-threshold measurement CNO: best upper limit 	 <i>pp</i>: 1st measurement ⁷Be: Seasonal modulation Simultaneous meas. of low-<i>E</i> solar-ν (<i>pp</i>, <i>pep</i>, ⁷Be, CNO limit) ⁸B: improved low-thrs meas. 	• The quest for CNO neutrinos
+ Other studies	+ Other studies	

Challenges for the CNO- ν detection

- Borexino spectrum past data selection criteria
 - Including removal of ¹¹C cosmogenic background by Three-Fold Coincidence: EPJ C81 (2021) 1075
- Neutrino signals extracted by multivariate fit
- CNO rate only 3-5 ev/day/100t
- CNO spectral shape almost degenerate with pep and ²¹⁰Bi decays:
 - 1. pep rate can be constrained to SSM predictions within 1.4%
 - 2. But what about ²¹⁰Bi?

Strategy for ²¹⁰Bi constraint

Measuring ²¹⁰Po could allow to constraint ²¹⁰Bi

If only we had secular equilibrium!

...

Strategy for ²¹⁰Bi constraint

²¹⁰Pb
$$\xrightarrow{\beta^{-}}$$
 ²¹⁰Bi $\xrightarrow{\beta^{-}}$ ²¹⁰Po $\xrightarrow{\alpha}$ ²⁰⁶Pb $\xrightarrow{206}$ Pb

- ²¹⁰Po contamination on the inner vessel
- Diffusion is very slow: ~ 10⁻⁹ m²/s
- But we observed seasonal convective currents bringing ²¹⁰Po into the FV

How to prevent convection?

Warm air from room ventilation (~20°C)

BOREXINO Water Tank

Heat sink 6°C (Hall C floor) stable vertical temperature gradient

fluid stratification

- 1. Insulation of the water tank (2015-16)
- 2. Active temperature control of the upper dome (2017)
- Active temperature control of the Hall ventilation inlet (2019)

Mitglied der Helmholtz-Gemeinschaft

Effects of temperature control on ²¹⁰Po

Verified by a complete fluido-dynamics modelling. V. di Marcello et al., NIM A 964 (2020)

²¹⁰Bi constraints from *Low Polonium Field*

~ 20t "bubble" of scintillator, located ~80 cm above the center We measure the ²¹⁰Po rate in the "bubble":

- 1. is this all supported by ²¹⁰Bi?
- 2. or is it partly due to residual convection?

Therefore we set *only* an upper limit on ²¹⁰Bi

 $R(^{210}Bi) \le R(^{210}Po)$

Good! It implies a lower limit on CNO

CNO fit results (2020)

$R_{CNO} = 7.2^{+2.9}_{-1.7}(stat)^{+0.6}_{-0.5}(sys) \text{ cpd/100t}$

- Multivariate Monte Carlo fit:
 - ¹¹C-subtracted energy spectrum
 - ¹¹C-enhanced energy spectrum
 - Radial profile
- *pep* rate: gaussian penalty at SSM prediction
- ²¹⁰Bi rate: semi-gaussian penalty at our upper limit (11.5 ± 1.3) cpd/100t
- Systematics from:
 - Fit configuration (binning, range)
 - Spectral shapes (¹¹C, ²¹⁰Bi)
 - Detector response (energy scale, non-uniformity, non-linearity)

physicsworld TOP10 BREAKTHROUGH 2020

- No CNO hypothesis excluded at 5.0 σ
- Including other pp-chain fluxes from Borexino: LZ disfavoured at 2.1 σ

What's new?

- Dataset:
 - removed ~ 7 month of 2016 (still high ²¹⁰Po)
 - added ~19 month Mar 2020 -> Oct 2021
 - Total exposure: + 33%
- Larger Low Polonium Field with less ²¹⁰Po
- More strigent upper limit: R(²¹⁰Bi) < (10.8 ± 1.0) cpd/100t

CNO fit results (2022)

$R_{CNO} = 6.7^{+2.0}_{-0.8}(stat)^{+0.5}_{-0.4}(sys) \text{ cpd/100t}$

Spectrum after subtracting all non-CNO contributions

arXiv:2205.15975 (subm. for publ. on Phys. Rev Lett.)

No-CNO hypothesis excluded at 7.0 σ

Implications for solar physics

- Global fit to all Borexino / all solar data (+ KamLAND)
- Compatibility with the High-Z model
- Tension with the Low-Z model
 - Only when CNO data are included!
 - p-value shifts 0.327 -> 0.028
- Assuming High-HZ, Borexino results (⁷Be, ⁸B, CNO) disfavour Low-Z model at ~3.1σ.

Forschungszer

Borexino

3

choosing kappropriately ministrates dep 20.08

from solar global analysis

 $N_{CN} = (5.78^{+1.86}_{-1.00}) \cdot 10^{-4}$

Vulcano 2022 - Borexino results

D. D'Angelo

 $N_{\rm CN} \ [\times 10^{-4}]$

7

8

Phys. Rev. Lett. 128 (2022) 091803 Phys. Rev. D 105 (2022) 052002

Directional measurement

- First directional measurement of sub-MeV solar neutrinos in liquid scintillator.
- First two PMT hits in each event have a higher chance of being Cherenkov rather than scintillation
- For neutrino events they should <u>correlate with the</u> <u>position of the Sun</u>, unlike for background.

Directional measurement

- Focus on ⁷Be energy region: [0.54, 074] MeV
- Using Phase-I data and enlarged FV (132t)

Peak expected at $\cos \alpha \sim 0.7$ (considering energy and ref. index)

No neutrino hypothesis rejected at > 5 σ

$$N_{\text{solar-}\nu} = 10887^{+2386}_{-2103}(\text{stat}) \pm 947(\text{syst})$$

 $R_{7Be} = 51.6^{+13.9}_{-12.5}$ cpd/100t (in agreement with Phase-I measurement)

Proof-of-Principle for future hybrid detectors

Earth's eccentricity by solar $oldsymbol{\nu}$

[Lomb-Scargle analysis: no other significant modulation]

$$\varepsilon = 0.0184 \pm 0.0032 \ (5.9\sigma)$$

arXiv:2204.07029 accept. for publ. on Astropart. Phys.

Best result with solar u

Vulcano 2022 – Borexino results

Summary

- New 2022 result with full Phase-III data yield a 7 σ evidence of CNO neutrino observation
- Low metallicity models are disfavoured at 3.1 σ
- First directional solar neutrino neutrino measurement by Chrenkov radation in a liquid scintillator detector
- Best determination of the Earth's eccentricity by solar neutrinos

All Borexino solar ${f v}$ results in one table

	Neutrinos	References	Rate [cpd/100t]	Flux [cm²s¹]
	рр	Nature 2014, Nature 2018, PRD 2019	(134±10) ₋₁₀ *6	(6.1±0.5) _{-0.5} ^{+0.3} x10 ¹⁰
	⁷ Be	PLB 2008, PRL 2011, Nature 2018, PRD 2019	(48.3±1.1) _{0.7} +0.4	(4.99±0.11) _{-0.08} * ^{0.06} x10 ⁹
	рер	PRL 2012, Nature 2018 PRD 2019	(2.65±0.36) _{-0.24} +0.15 [HZ]	(1.27±0.19) _{-0.12} +0.08x108[HZ]
	⁸ B	PRD 2010, Nature 2018, PRD 2020	0.223 _{-0.022} +0.021	$5.68_{_{-0.41-0.03}}^{_{+0.39+0.03}} \times 10^6$
	hep	Nature 2018, PRD 2020	<0.002 (90% CL)	<1.8x10 ⁵ (90% CL)
+	CNO	arXiv 2022	6.7 _{-0.8} +2.0	6.6 _{-0.9} +2.0x10 ⁸

- Borexino was a unique detector with an <u>unmatched radiopurity</u>
- It has performed the full solar neutrino
 spectroscopy with a single experiment
- Data taking ended in Oct 2021 ...
- ... but data analysis is still ongoing: Stay tuned!

Chair

Backup

Temperature stabilization

Multivariate fit

Three-fold Coincidence

Low Polonium Field analysis

- 3D paraboloidal fit of the "bubble" in 2 months binning
- Alignment of the z position

²¹⁰Bi spatial uniformity

Systematics

