Extragalactic Cosmic Ray Sources

Michael Kachelrieß

NTNU, Trondheim

Outline of the talk

Introduction

Observations and their interpretation:

- Energy spectrum
- CR composition $> 10^{17} \text{ eV}$
- Anisotropies and correlations
- EGRB, cascade limit and neutrinos

Sources:

- General constraints
- Comment on EGMF
- specific sources: radio galaxies

Summary

Outline of the talk

- Introduction
- Observations and their (my) interpretation:
 - Energy spectrum
 - CR composition > 10¹⁷ eV
 - Anisotropies and correlations
 - EGRB, cascade limit and neutrinos

Sources:

- General constraints
- Comment on EGMF
- specific sources: radio galaxies

Summary

 \Rightarrow talk by M. Unger

 \Rightarrow talk by M. Unger

3

Observations I: Energy spectrum

• precision increases \Rightarrow more features

B b

Observations I: Composition

• precision increases \Rightarrow more features

mixed composition:

- indicates Peter's cycle
- $p+He \sim 50\%$, plus intermediate nuclei; (Galactic) iron: < 20%

э

< 47 ▶

Observations I:

• precision increases \Rightarrow more features

mixed composition:

- indicates Peter's cycle
- $p+He \sim 50\%$, plus intermediate nuclei; (Galactic) iron: < 20%
- early transition from Galactic to extragalactic CRs

э

< 47 ▶

Interpretation

[PAO '20]

- single source: excluded by anisotropy: few sources possible?
- transition between different nuclear groups, from uniform sources:

Interpretation

[PAO '20]

- single source: excluded by anisotropy: few sources possible?
- transition between different nuclear groups, from uniform sources:

- + good fit of spectrum and composition
 - extremly flat spectra $dN/dE \propto 1/E E$

Michael Kachelrieß (NTNU, Trondheim)

- most analyses use average or typical sources
- what changes using full population?

- most analyses use average or typical sources
- what changes using full population?
- previous fit:

• Ex.: effective spectra for source population $dn_s/dE_{max} \sim E_{max}^{-\beta}$ with $dN_{inj}/dE \sim E^{-\alpha}$

- most analyses use average or typical sources
- what changes using full population?
- previous fit:
 - ▶ Ex.: effective spectra for source population $dn_s/dE_{max} \sim E_{max}^{-\beta}$ with $dN_{inj}/dE \sim E^{-\alpha}$
 - \Rightarrow observed spectrum $dN_{CR}/dE \sim E^{-\alpha-\beta+1}$
 - flat "average" spectra require even flatter single source spectra

・ 何 ト ・ ラ ト ・ ラ ト ・ ラ

- most analyses use average or typical sources
- what changes using full population?
- previous fit:
 - Ex.: effective spectra for source population $dn_s/dE_{max} \sim E_{max}^{-\beta}$ with $dN_{inj}/dE \sim E^{-\alpha}$
 - \Rightarrow observed spectrum $dN_{CR}/dE \sim E^{-\alpha-\beta+1}$
 - flat "average" spectra require even flatter single source spectra
- typical source \Rightarrow population: RMS(X_{max}) becomes wider
 - \Rightarrow only small variation allowed

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- most analyses use average or typical sources
- what changes using full population?
- previous fit:
 - Ex.: effective spectra for source population $dn_s/dE_{max} \sim E_{max}^{-\beta}$ with $dN_{inj}/dE \sim E^{-\alpha}$
 - \Rightarrow observed spectrum $dN_{CR}/dE \sim E^{-\alpha-\beta+1}$
 - flat "average" spectra require even flatter single source spectra
- typical source \Rightarrow population: RMS(X_{max}) becomes wider
 - \Rightarrow only small variation allowed
 - are UHECR sources standard candles??

[Ehlert, Oikinomou, Unger '22]

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- most analyses use average or typical sources
- what changes using full population?
- previous fit:
 - Ex.: effective spectra for source population $dn_s/dE_{max} \sim E_{max}^{-\beta}$ with $dN_{inj}/dE \sim E^{-\alpha}$
 - \Rightarrow observed spectrum $dN_{CR}/dE \sim E^{-\alpha-\beta+1}$
 - flat "average" spectra require even flatter single source spectra
- typical source \Rightarrow population: RMS(X_{max}) becomes wider
 - \Rightarrow only small variation allowed
 - are UHECR sources standard candles??

[Ehlert, Oikinomou, Unger '22]

or few UHECR sources dominate flux?

Observations II: Potential anisotropies

э

< □ > < □ > < □ > < □ > < □ > < □ >

Observations II: Potential anisotropies

Various signatures for deviations from isotropy:

small-scale anisotropies or multiplets:	absent
medium-scale anisotropies, hot and cold spots:	evidence
dipole anisotropy:	detected
cross-correlations UHECR and source catalogues:	evidence
Michael Kachelrieß (NTNU, Trondheim) Extragalactic Cosmic Ray Sources	Vulcano, 28. Sept '22 6 / 22

Observations II: dipole

[PAO '17, '18]

• E > 8 EeV: dipole observed with $A \simeq 6.5\%$ and $R.A. \simeq 120^{\circ}$

Multi-messenger picture

Michael Kachelrieß (NTNU, Trondheim)

Multi-messenger picture

Sources

Constraints

General constraints on UHECR sources:

• Hillas criterium: $R_L = cp/ZeB \le R_s$ or $E_{\max} \le \Gamma ZeBR_s$

and $t_{\rm acc} \leq t_{\rm act}, t_{\rm loss}$

э

General constraints on UHECR sources:

• Hillas criterium: $R_L = cp/ZeB \leq R_s$ or $E_{\max} \leq \Gamma ZeBR_s$

• Blandford criterium: $L_{\min} = U^2/R$ or

$$L_{
m min} \sim 3 imes 10^{42} {
m erg/s} \left(rac{E/Z}{5 imes 10^{18} {
m eV}}
ight)^2 \left(\Gamma^2 / eta
ight)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

General constraints on UHECR sources:

- Hillas criterium: $R_L = cp/ZeB \le R_s$ or $E_{\max} \lesssim \Gamma ZeBR_s$
- Blandford criterium: $L_{\min}=\,U^2/R$ or

$$L_{\rm min} \sim 3 \times 10^{42} {\rm erg/s} \left(\frac{E/Z}{5 \times 10^{18} {\rm eV}}\right)^2 \left(\Gamma^2/\beta\right)$$

(本語) とうき とうき ううき

9/22

• UHECR emissivity $Q\sim 10^{45}\,{\rm erg}/{\rm Mpc}^3/{\rm yr}$

General constraints on UHECR sources:

- Hillas criterium: $R_L = cp/ZeB \le R_s$ or $E_{\max} \lesssim \Gamma ZeBR_s$
- Blandford criterium: $L_{\min}=\,U^2/R$ or

$$L_{\rm min} \sim 3 \times 10^{42} {\rm erg/s} \left(\frac{E/Z}{5 \times 10^{18} {\rm eV}}\right)^2 \left(\Gamma^2/\beta\right)$$

- $\bullet~{\rm UHECR}$ emissivity $Q\sim 10^{45}\,{\rm erg}/{\rm Mpc}^3/{\rm yr}$
- source density for stationary sources:
 - sufficiently luminuous: $n_s \lesssim Q/L_{
 m min} \sim 10^{-5}/
 m Mpc^3$
 - avoid multiplets: $n_s \gtrsim 10^{-5}/\text{Mpc}^3$ (for weak EGMF)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

General constraints on UHECR sources:

- Hillas criterium: $R_L = cp/ZeB \le R_s$ or $E_{\max} \lesssim \Gamma ZeBR_s$
- Blandford criterium: $L_{\min}=\,U^2/R$ or

$$L_{\rm min} \sim 3 \times 10^{42} {\rm erg/s} \left(\frac{E/Z}{5 \times 10^{18} {\rm eV}}\right)^2 \left(\Gamma^2/\beta\right)$$

- $\bullet~{\rm UHECR}$ emissivity $Q\sim 10^{45}\,{\rm erg}/{\rm Mpc}^3/{\rm yr}$
- source density for bursting sources: $n_s \simeq 3R\tau/5$
 - sufficiently luminuous: $R \lesssim Q/(\tau L_{\rm min}) \sim 10^{-8}/{\rm Mpc}^3/{\rm yr}$ (for $\tau \sim 10^3 \, {\rm yr}$)
 - \blacktriangleright avoid multiplets: $R \sim n_s/\tau \gtrsim 10^{-8}/{\rm Mpc}^3/{\rm yr}$

イロト 不得下 イヨト イヨト 二日

General constraints on UHECR sources:

- Hillas criterium: $R_L = cp/ZeB \le R_s$ or $E_{\max} \lesssim \Gamma ZeBR_s$
- Blandford criterium: $L_{\min}=\,U^2/R$ or

$$L_{\rm min} \sim 3 \times 10^{42} {\rm erg/s} \left(\frac{E/Z}{5 \times 10^{18} {\rm eV}}\right)^2 \left(\Gamma^2/\beta\right)$$

 $\bullet~{\rm UHECR}$ emissivity $Q\sim 10^{45}\,{\rm erg}/{\rm Mpc}^3/{\rm yr}$

 \Rightarrow source density/rate tightly constrained

(本語) とうき とうき ううき

how to relax constraints?

- density limit relaxed by strong EGMF
- $L_{\rm em} \gg L_X?$
- $L_{
 m em}$ relaxed by two-step acceleration
- missing subclasses

Density vs. luminosity for bursting sources

• time-delay τ in turbulent EGMF

$$\tau \simeq 10^3 \text{yr} \left(\frac{3 \times 10^{19} \text{eV}}{E/Z}\right)^2 \left(\frac{d}{100 \text{ Mpc}}\right) \left(\frac{l_c}{1 \text{ Mpc}}\right) \left(\frac{B}{10^{-10} \text{G}}\right)^2$$

Density vs. luminosity for bursting sources

- time-delay au in turbulent EGMF
- $L>L_{
 m min}$ typically no problem, since $au_0\ll au$
- but emissivity too smalll

Constraints on the EGMF

• strong EGMF required for large deflections of UHECRs

$$\vartheta_{\rm rms} \simeq 0.8^{\circ} \left(\frac{3 \times 10^{19} \text{eV}}{E/Z}\right) \left(\frac{d}{100 \,\text{Mpc}}\right)^{1/2} \left(\frac{l_c}{1 \,\text{Mpc}}\right)^{1/2} \left(\frac{B}{10^{-10} \text{G}}\right)$$

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Constraints on the EGMF

- strong EGMF required for large deflections of UHECRs
- larger effect on TeV cascade electrons \Rightarrow lower limits:

[[]Fermi-LAT & Biteau'18]

Sources

Excursion: EGMF

Constraints on the EGMF

- strong EGMF required for large deflections of UHECRs
- larger effect on TeV cascade electrons \Rightarrow lower limits
- absence of halos \Rightarrow upper limit \Rightarrow overlap except for $t < 10^4 \, {\rm yr}$

[Broderick et. al '18]

Sources

Excursion: EGMF

Constraints on the EGMF

- strong EGMF required for large deflections of UHECRs
- \bullet larger effect on TeV cascade electrons \Rightarrow lower limits
- absence of halos \Rightarrow upper limit \Rightarrow overlap except for $t < 10^4 \, {\rm yr}$

[Broderick et. al '18]

[Broderick et. al '12]

• importance of plasma instability?

Radio galaxies

[Eichmann, MK, Oikonomou '22]

- longstanding UHECR sources
 - FR-I or low-luminosity radio galaxies
 - FR-II or high-luminosity radio galaxies

э

A B A A B A

< 47 ▶

Radio galaxies

[Eichmann, MK, Oikonomou '22]

- longstanding UHECR sources
 - FR-I or low-luminosity radio galaxies
 - FR-II or high-luminosity radio galaxies
- rather detailed information about local sources
- but indirect:
 - CR luminosity

 $L_{151} \Rightarrow Q_{\rm jet} \Rightarrow L_{\rm CR}$

maximal rigidity

 $Q_{\rm jet} \Rightarrow \mathcal{R}_{\rm max}$

3

A B A A B A

Radio galaxies

[Eichmann, MK, Oikonomou '22]

- longstanding UHECR sources
 - FR-I or low-luminosity radio galaxies
 - FR-II or high-luminosity radio galaxies
- rather detailed information about local sources
- but indirect:
 - CR luminosity

$$L_{151} \Rightarrow Q_{\rm jet} \Rightarrow L_{\rm CR}$$

maximal rigidity

$$Q_{\rm jet} \Rightarrow \mathcal{R}_{\rm max}$$

- \Rightarrow model local sources individually: $t_{\rm acc}$,...
 - add continuous source function for $d>200\,{\rm Mpc}$

Radio flux vs. distance

- sources above (black dotted) accelerate $\mathcal{R} \gtrsim 1 \, \text{EV}$
- few sources contribute at least > 5% of Cen A flux (orange)

Radio flux vs. distance

- sources above (black dotted) accelerate $\mathcal{R} \gtrsim 1 \, \text{EV}$
- few sources contribute at least > 5% of Cen A flux (orange)
- can such small a sample explain dipole data?

Sky map of local radio galaxies

Galactic coordinates

• non-uniform distribution:

- concentrated towards SG plane
- dipole structure present
- "close" to observed UHECR dipole

A B A A B A

Relative contributions and spectrum:

Michael Kachelrieß (NTNU, Trondheim)

extragalactic Cosmic Ray Sources

Vulcano, 28. Sept '22 17 / 22

Relative contributions and spectrum:

features like instep & ankle expected

Dipole and quadrupole strength:

Dipole and quadrupole strength:

Dipole direction:

Dipole direction:

Constraints on EGMF and source life-time:

• Five sources:

- + good fits using only Fornax A, Virgo A and/or 3C270
- + knee: transition local, LL radio galaxies
- requires $B \sim 1 \text{nG} \Rightarrow \text{large } t_{\text{act}} \sim 1 \text{ Gyr}$

3

(B)

Constraints on EGMF and source life-time:

- Five sources:
- Eleven sources: many more scenarios
 - + allows to reduce B and t_{act} :

Constraints on EGMF and source life-time:

- Five sources:
- Eleven sources: many more scenarios
 - 2.1 0.5 2.0 0.0 1.9 og(t_{act}/1 Gyr) 1.8 -0.5 1.7 ² 1.7 j60 1.6 -1.0 1.5 -1.51.4 1.3 -2.0 -0.50 -0.25 0.00 0.25 0.50 -0.75 $\log(B_{\rm rms}/1\,{\rm nG})$
 - + allows to reduce B and t_{act} :

- some sources are generically suppressed:
 - ***** Cygnus A: too short t_{act}
 - ★ Cen A: too strong anisotropy

[Eichmann, MK '22]

• magnetic horizon suppresses low-rigidity CRs

[Parizot '04, Berezinsky, Gazizov '05]

b 4 T

- (日)

э

21/22

[Eichmann, MK '22]

- magnetic horizon suppresses low-rigidity CRs [Parizot '04, Berezinsky, Gazizov '05]
- $1/E^2$ spectrum, finite life-time & dominance of one source:

[Eichmann, MK '22]

- magnetic horizon suppresses low-rigidity CRs [Parizot '04, Berezinsky, Gazizov '05]
- $1/E^2$ spectrum, finite life-time & dominance of one source:

[Eichmann, MK '22]

- magnetic horizon suppresses low-rigidity CRs [Parizot '04, Berezinsky, Gazizov '05]
- $1/E^2$ spectrum, finite life-time & dominance of one source:

4 3 4 3 4 3 4

э

Summary

- considerable experimental progress:
 - spectrum and dipole
 - composition: agreement PAO vs. TA?
 - progress of correlation analyses needs proton rich event samples
- 2 theoretical studies:
 - include all info: spectrum, composition & anisotropies
 - abandon average sources
 - impose finite activity time of sources
- opromising UHECR sources:
 - several candidates as GRBs are already disfavoured
 - (subclasses of) AGNs remain attractive option
 - probably only few dominating sources

common source class for UHECRs and neutrinos: unlikely?

- 31