

Measuring the dark matter content of dwarf spheroidal galaxies

Vulcano Workshop 2022 — Frontier Objects in Astrophysics and Particle Physics (Elba Island, 2022/09/25-10/01)

FRANCESCO G. SATURNI (INAF-OAR & ASI-SSDC) for the CTA Consortium

<u>Colls.</u>: L. A. Antonelli, M. Doro, S. Lombardi, A. Morselli, K. D. Nakashima, G. Rodríguez-Fernández

• Main targets for indirect searches of heavy DM

• Measuring DM densities in dSph halos

• Summary

cherenkov telescope array

The quest for dark matter in the Universe

- The DM content of the Universe
- The zoo of particle DM candidates
- Direct vs indirect DM detection
- The expected γ -ray flux from DM self-interaction

Dark matter (DM) is the major component of the Universe's matter content:

- ~22% of the total Universe's energy budget;
- 2. ~85% of the Universe's matter content.

Its existence is only indirectly inferred so far from several astrophysical/cosmological observations.

Rotation curves of galaxies

Peculiar objects (e.g. Bullet Cluster)

Cosmological large-scale structures

CMB oscillations

See M. Vecchi's talk!

The zoo of particle DM theories:

- spread over 48 orders of magnitude in mass and >50 in interaction cross section;
- 2. origin of DM components from corruptions in the spacetime quantum structure to remnants of primordial macroscopic objects.

Current preferred paradigm: DM is composed by particles belonging to the WIMP (weakly interacting massive particles) family.

See M. Vecchi's talk!

Events of dark-baryonic matter interaction never observed so far:

 DM cross section for interaction with baryonic matter must be extremely small (order of weak interactions or below)

Production of DM candidates in particle accelerators never achieved so far:

 DM production must be a rare process that happens only in extreme conditions (e.g. the primordial Universe)

Indirect detection to look for production of Standard Model (SM) particles from DM self-interaction.

Direct detection (collision with baryonic matter)

Direct detection (production in particle accelerators)

Indirect detection (self-interaction into SM products)

See M. Vecchi's talk!

Expected γ -ray flux from WIMP self-interaction decomposed into:

- 1. particle-physics term (flux for single interactions);
- astrophysical term the so-called J-factor (for annihilation) or D-factor (for decay).

$$J(\Delta \Omega) = \int_{\Delta \Omega} d\Omega \int_{\text{l.o.s.}} \rho_{\text{DM}}^2(\ell; \Omega) d\ell$$

$$D(\Delta \Omega) = \int_{\Delta \Omega} d\Omega \int_{\text{l.o.s.}} \rho_{\text{DM}}(\ell; \Omega) d\ell$$

See M. Vecchi's talk!

Spectral shapes expected for DM self-interaction into SM pairs

cherenkov telescope array

Main targets for indirect searches of heavy dark matter

The dwarf spheroidal galaxies
Prospects for new discoveries

Main targets for heavy DM searches

Milky Way center & ridge (very close, but highly bogcontaminated and with uncertain DM profile)

Galaxy clusters (high DM content, but far and possibly bkg-contaminated)

Dwarf spheroidal galaxies (high M/L ratio and no bkg, but small halos => intrinsically low DM content)

Dark clumps (galaxies without stars, only theoretically predicted so far

Main targets for heavy DM searches

Dwarf spheroidal galaxies (dSphs) are satellites of the Milky Way and other Local Group galaxies that exhibit virial masses much higher than what expected from their stellar luminosities (McConnachie 2012).

Possible reason: extreme DM domination.

The Sculptor dSph (credits: D. Malin, AAO)

 $2\langle \mathcal{T} \rangle + \langle U \rangle = 0$ virial theorem $3m_*\sigma_r^2 = \frac{GM_{tot}m_*}{R}$ $M_{tot} = \frac{3R\sigma_r^2}{G}$ vel. dispersion gravitational mass $m_* \approx 1 \, \mathbf{M}_{\odot} \to M_* \approx N \, \mathbf{M}_{\odot} \Rightarrow L_{\text{tot}} \approx N \, \mathbf{L}_{\odot}$ expectedmeasured $\left(\frac{M_{\text{tot}}}{L_{\text{tot}}}\right)_{\text{theo}} = \frac{M_*}{L_{\text{tot}}} \approx 1$ $10 \lesssim \left(\frac{M_{\text{tot}}}{L_{\text{tot}}}\right)_{\text{meas}} \lesssim 1000$

Main targets for heavy DM searches

Several dSphs known around the MW.

Two main categories:

- 1. classical dSphs O(100) to O(1000) member stars
- 2. ultra-faint dSphs less than O(10) to less than O(100) member stars

Many more (ultra-faint) dSphs are being discovered now thanks to performance improvements of telescope technologies.

Sky distribution of dSphs

3D distribution of dSphs

61

Prospects for future discoveries of dSphs

cherenkov telescope array

Measuring dark matter densities in dwarf galaxy halos

- The Jeans analysis
- The sample selection
- Input priors and assumptions
- The astrophysical factors of dSph halos
- Caveats in the analysis

Measuring DM densities in dSph halos

DM was introduced to explain the velocity distribution of galaxies in the Coma cluster (Zwicky 1930) and later adopted to successfully describe the flattening of rotation curves in spiral galaxies (Zwicky 1933, Bertone & Hooper 2016).

Rotation curves of spiral galaxies usually derived from measurements of gas clouds; for other types of galaxies, problems are:

- 1. no or little rotational support;
- 2. no gas to measure rotation velocity.

Need of a paradigm change (equations + velocity tracer):

JEANS ANALYSIS

The gravity of the visible matter in the Galaxy is not enough to explain the high orbital speeds of stars in the Galaxy. For example, the Sun is moving about 60 km/sec too fast. The part of the rotation curve contributed by the visible matter only is the bottom curve. The discrepancy between the two curves is evidence for a **dark matter hab**.

HALO (velocity ~ const)

BULGE (density ~ const)

DISK (mass ~ 0)

Measuring DM densities in dSph halos

- Jeans analysis assumptions:
 - Collisionless system
 - Steady state
 - Negligible rotational support
 - Spherical symmetry (not essential)
- Second-order development of the Jeans equations (Binney & Tremaine 2008):

$$\frac{1}{n_*} \left[\frac{d}{dr} \left(n_* \overline{v_r^2} \right) \right] + \frac{2}{r} \beta_{\text{ani}}(r) \overline{v_r^2} = -\frac{G \left[M_{\text{DM}}(r) + M_*(r) \right]}{r^2}$$

$$n_* = n_*(r)$$

luminosity profiles

 $\beta_{ani}(r) = 1 - \frac{v_{\theta}^2}{\overline{v_r^2}}$ velocity anisotropy

 $M_*(r) pprox 0$ DM domination (if verified)

The Jeans analysis of dSph kinematics is one of the methods that provides the most robust constraints on the DM amount in such halos.

Example: MCMC Jeans analysis of dSph kinematics with CLUMPY (Charbonnier+ 2012, Bonnivard+ 2016, Hütten+ 2019).

Alternatives:

- Empyrical models of the dSph stellar velocity dispersion (Evans+ 2004)
- Likelihood maximization of the Jeans equation (Strigari+ 2008, Geringer-Sameth+ 2015, Hayashi+ 2016)
- Semi-analytical J-factor integration (Acciari+ 2010, Evans+ 2016)
- Bayesian analysis of halo properties (Martínez+ 2011)

Optimal dSphs selected according to:

- 1. Distance (*d* < 100 pc)
- Culmination zenith angle (ZA_{min} < 30°)

Targets with no/poor brightness and/ or kinematic data excluded from the MCMC Jeans analysis.

Surviving sample:

6 Northern dSphs (1 classical + 5 ultra-faint)

6 Southern dSphs (3 classical + 3 ultra-faint)

Name	Abbr.	Туре	R.A. (hh mm ss)	dec. (dd mm ss)	Distance (kc)	ZJ _{tult} 🔥 (deg	Cons	Month	2022 (in prep.)
Andromeda XVIII	AndXVIII	uft	00.02.14.5	+45.05.20	1330 ± 104	16.3	69.7	Sen	McConnachie (2012): Makarova et al. (2017)
Aquarius	Aar	uft	20 46 51 8	-12 50 53	1030 + 57	41.6	11.8	Aug	McConnachie (2012): Ordoñez and Saraiedini (2016)
Boötes I	Boöl	uft	14 00 06 0	± 1430.00	65 + 3	14.3	30.1	Anr	McConnachie (2012); Okamoto et al. (2012)
Boötes II	Robil	uft	13 58 00.0	+12 51 00	30 + 2	15.0	37.5	Apr	McConnachia (2012); Sesar et al. (2014)
Boötes III	Boölli	uft	13 57 12 0	+26.48.00	46 ± 2	2.0	51.4	Apr	McConnachie (2012); Sesar et al. (2014) McConnachie (2012): Sesar et al. (2014)
Canes Venatici I	CVnI	uft	13 28 03 5	+33 33 21	216 + 8	4.8	58.2	Apr	McConnachie (2012); Okamoto et al. (2012)
Canes Venatici II	CVnII	uft	12 57 10.0	+34 10 15	159 + 8	5.6	58.0	Apr	McConnachie (2012); Okamoto et al. (2012) McConnachie (2012); Okamoto et al. (2012)
Carina	Car	cle	06 41 36 7	-50 57 58	106 ± 1	79.7	26.3	Dec	McConnachie (2012); Karczmarek et al. (2012)
Cetus I	CetI	uft	00 26 11 0	-11 02 40	748 ± 31	30.8	13.6	Sen	McConnachie (2012); Karezinarek et al. (2013) McConnachie (2012); Dambis et al. (2013)
Cotus II	CatII	unt	01 17 52 8	17 25 12	20 + 2	46.2	7.2	Oct	Drlige Warner et al. (2015)
Columba I	Coll	uft	05 31 26.4	-28 01 48	182 ± 18	56.8	3.4	Dec	Drlica-Wagner et al. (2015)
Coma Berenices	CBe	uft	12 26 59 0	+23 54 15	42 + 2	4.0	48.5	Mar	McConnachie (2012): Musella et al. (2009)
Draco I	DraI	cle	17 20 12 4	+57 54 55	75 ± 4	20.2	82.5	Iun	McConnachie (2012); Hernitschek et al. (2016)
Draco II	Drall	uft	15 52 47 6	+64 33 55	20 ± 3	35.8	89.2	May	L sevens et al. (2015a)
Fridanus II	FriII	uft	03 44 21 5	-43 31 48	330 ± 16	72.3	18.9	Nov	Bechtol et al. (2015)
Fridanus III	EriIII	uft	02 22 45 5	-52 16 48	95 + 27	81.0	27.7	Oct	Bechtol et al. (2015)
Eomox	For	cle	02 22 45.5	-34 26 57	146 + 1	63.2	0.8	Oct	McConnachie (2012): Karczmarek et al. (2015)
Graw I	GruI	uft	22 55 37.5	-50.00.48	120 ± 17	78.0	25.5	San	Konosov at al. (2015a)
Grus II	Grall	uft	22 04 04 8	-46 26 24	53 + 5	75.2	21.8	Aug	Drlica-Wagner et al. (2015a)
Hercules	Her	uft	16 31 02 0	+12 47 30	137 ± 11	16.0	37.4	May	McConnachie (2012): Garling et al. (2018)
Horologium I	Horl	uft	02 55 28 0	-54.06.36	87 ± 13	82.0	20.5	Oct	Rechtal at al. (2015)
Hydra II	Hwall	unt	12 21 42 1	-31 50 07	134 ± 10	60.7	29.5	Mar	Martin et al. (2015)
Indus I	Indi	uft	21 08 48 1	-51.09.36	69 ± 16	79.9	26.5	Aug	Bechtol et al. (2015)
Indus II	IndII	uft	20 38 52 8	-46 09 36	214 + 16	74.9	21.5	Aug	Drlice-Wagner et al. (2015)
Laevone 3	L ag3	uft	20 36 52.8	+14 58 48	214 ± 10 67 ± 3	13.8	39.6	Aug	Lawrens et al. (2015a)
Lacyens 5	LeoI	cle	10.08.28.1	+12 18 23	272 ± 10	16.5	36.0	Eeb	McConnachia (2012): Statson et al. (2014)
Leo II	LeoII	ale	11 12 28 8	122.00.06	240 + 0	6.6	46.8	Mar	McConnachia (2012); Stellow et al. (2014)
Leo IV	LeoIV	uft	11 32 57 0	-00 32 00	240 ± 9	20.3	24.1	Mar	McConnachie (2012); Medina et al. (2018)
Leo V	LeoV	uft	11 31 09 6	+02 13 12	169 ± 5	26.5	26.0	Mar	McConnachie (2012); Medina et al. (2018)
LeoT	LeoT	unt	00 34 53 4	+17.03.05	377 + 28	11.7	41.7	Eab	McConnachie (2012); Nieunia et al. (2013) McConnachie (2012); Bineni et al. (2014)
Phoenix I	PhoI	unt	01 51 06 3	-44 26 41	427 ± 21	73.2	10.8	Oct	McConnachie (2012); Ripepi et al. (2014) McConnachie (2012); Ripapi at al. (2014)
Phoenix II	PheII	uft	23 39 57 6	-54 24 36	927 ± 51 95 ± 18	83.2	20.8	Sen	Bechtol et al. (2015)
Pictor I	PicI	uft	04 43 48 0	-50 16 48	126 + 24	79.0	25.0	Nov	Bechtol et al. (2015)
Piscos II	PacII	uft	22 58 31 0	+05 57 00	120 ± 24 182 ± 13	22.8	30.6	Sen	McConnachie (2012): Sand et al. (2012)
Reticulum II	RetII	uft	03 35 40 9	-54.03.00	32 ± 2	82.8	20.4	Nov	Bechtol et al. (2015)
Reticulum III	RetIII	uft	03 45 26 3	-60 27 00	92 + 13	80.2	35.8	Nov	Drlice-Wagner et al. (2015)
Sagittarius I	SgrI	dis	18 55 19 5	-30 32 43	31 + 1	50.3	5.0	Inl	McConnachie (2012): Valcheva et al. (2015)
Sagittarius II	Sarli	uft	10 52 40 5	-22.04.05	67 ± 5	50.8	2.6	Iul	Leavang et al. (2015a)
Sculptor	Sel	cle	01.00.09.4	-33 42 33	84 ± 2	62.5	9.1	Oct	McConnachie (2012): Martínez-Vázouez et al. (2015).
Seme 1	Seal	uft	10 07 04 0	+16.04.55	23 ± 2	12.7	40.7	Eeb	McConnachie (2012); Martinez-Vazquez et al. (2013) McConnachie (2012); de Jong et al. (2008)
Semie 2	Seg1	uft	02 19 16 0	+20 10 31	36 + 2	8.6	44.8	Oct	McConnachie (2012); Boettcher et al. (2013)
Sertons	Sex	cle	10 13 03 0	-01 36 53	84 ± 3	30.4	23.0	Eeh	McConnachie (2012); Medina et al. (2018)
Triangulum II	Teill	uft	02 13 17 4	+36 10 42	30 ± 2	7.4	60.8	Oct	Konosov et al. (2015a)
Tucana I	Tuel	uft	22 41 49 6	-64 25 10	855 + 35		39.8	Sep	McConnachie (2012): Dambis et al. (2013)
Tucana II	Tuell	uft	22 52 16 7	-58 33 36	58 ± 6	87.3	33.0	Sep	Bechtol et al. (2015)
Tucana III	TucIII	uft	23 56 35 9	-59 36 00	25 + 2	88.4	35.0	Sep	Drlica-Wagner et al. (2015)
Tucana IV	TueIV	uft	00 02 55 3	-60 51 00	48 ± 4	89.6	36.2	See	Drlica-Wagner et al. (2015)
Ursa Maior I	UMaI	uft	10 34 52 8	+51 55 12	105 + 2	23.2	76.6	Mar	McConnachie (2012): Brown et al. (2012)
Ursa Major II	UMaI	uft	08 51 30 0	+63 07 48	35 + 2	34.4	87.8	Feb	McConnachie (2012): Dall'Ora et al. (2012)
Ursa Minor	UMi	cle	15 09 08 5	+67 13 21	68 ± 2	38.5		May	McConnachie (2012); Ruhland et al. (2012)
Willman 1	Will	uft	10.49.21.0	+51.03.00	38 ± 7	22.3	75.7	Mar	McConnschie (2012); de Jong et al. (2008)

Measuring DM densities in dSph halos

CLUMPY parametrization of input/output quantities:

- Empirically driven DM density profiles
 - Einasto (1965, cuspy)
 - Burkert (1995, cored)

$$\rho_{\rm DM}^{\rm Ein}(r) = \rho_s \exp\left\{-\frac{2}{\alpha}\left[\left(\frac{r}{r_s}\right)^{\alpha} - 1\right]\right\}$$

Cta

$$\rho_{\rm DM}^{\rm Bur}(r) = \frac{\rho_s}{\left(1 + r/r_s\right) \left[1 + \left(r/r_s\right)^2\right]}$$

- Light profile from surface luminosity fitting
 - 3D Zhao-Hernquist (generalized NFW)

g

$$\Sigma_*(R) = 2 \int_{R}^{+\infty} \frac{n_*(r)r}{\sqrt{r^2 - R^2}} dr$$

- Most general solution for velocity anisotropy profile
 - Baes & van Hese (2007)

$$\rho_{\rm DM}(r) = \tilde{\rho}_{\rm DM}\left[\psi(r), r\right] = f(\phi)g(r) \Rightarrow \beta_{\rm ani}(r) = -\frac{1}{2}\left(\frac{d\ln g}{d\ln r}\right) = \frac{\beta_0 + \beta_\infty (r/r_a)^\eta}{1 + (r/r_a)^\eta}$$

CLUMPY input data: surface brightness profile + kinematics of dSph member stars.

Surface brightness of dSphs fitted with 3D Zhao-Hernquist profiles projected onto 2D data.

CLUMPY input data: surface brightness profile + kinematics of dSph member stars.

Stellar memberships estimated through an EM algorithm (Walker+ 2009) with a cut at 95% CL (classical + Seg1) or adopted as binary (0/1, ultrafaint).

P _{me}	em (*	$(v_i, W_i) =$	$=\frac{\exp\left\{\frac{1}{2\pi2\pi\sqrt{2\pi\sqrt{2\pi\sqrt{2\pi\sqrt{2\pi\sqrt{2\pi\sqrt{2\pi\sqrt{2\pi\sqrt{2\pi\sqrt$	$-\frac{1}{2}\left[\frac{(v_i - v_i)}{\sigma(v)_{\text{fin}}^2}\right]$	$\frac{\left(\sqrt{v_{\text{mem}}}\right)^2}{(1 + \sigma(v)_i^2)^2} + \frac{1}{(1 + \sigma(v)_i^2)^2}$	$-\frac{(W)}{\sigma(W)}$	$f_i - \langle W \rangle_{\text{mem}}^2$	$\frac{\sigma_{\text{mem}}}{\sigma(V)}$	$\frac{\left \frac{2}{W_{i}^{2}}\right }{\overline{W_{i}^{2}}}$					C 10 ³ 10 ²	Bool	6. 2022 СВе	
$p_{\text{Bes}}(v_{i}) = \frac{1}{N_{\text{Bes}}\sigma_{\text{Bes}}\sqrt{2\pi}} \sum_{i=1}^{N_{\text{Bes}}} \exp\left\{-\frac{\left[v_{\text{Bes}}^{(i)} - v_{i}\right]^{2}}{2\sigma_{\text{Bes}}^{2}}\right\}$ $p_{\text{non}}(v_{i}, W_{i}) = \frac{p_{\text{Bes}}(v_{i})}{\sqrt{2\pi}\left[\sigma(W)_{\text{non}}^{2} + \sigma(W)_{i}^{2}\right]}} \exp\left\{-\frac{\left(W_{i} - (W_{\text{non}})\right)^{2}}{2\left[\sigma(W)_{\text{non}}^{2} + \sigma(W)_{i}^{2}\right]}\right\}$									10 ¹ 10 ⁰ 10 ³ 10 ² 10 ¹ ⁵ 10 ¹ ⁵ 10 ⁰ 10 ³								
Name	Site	M _V (mag)	ε	$(10^{5} L_{\odot}^{\rho_{s}^{*}} {\rm kpc^{-3}})$	rs* (kpc)	α* β	Γ γ'	Ref.	Membership	N _{mem}	⟨v _r ⟩ km s ^{−1}	$\sigma_v \ { m km \ s^{-1}}$	Ref.	10 ² 10 ¹			
Boöl CBe Dral Grull RetII Scl Seg1 Sex SgrI SgrII Trill Will	N N N S S S N S S S N N	$\begin{array}{c} -6.3\pm0.2\\ -4.1\pm0.5\\ -8.8\pm0.3\\ -3.9\pm0.2\\ -3.6\pm0.2\\ -11.1\pm0.5\\ -1.5\pm0.8\\ -9.3\pm0.5\\ -13.5\pm0.3\\ -5.2\pm0.4\\ -1.8\pm0.5\\ -2.7\pm0.8\end{array}$	$\begin{array}{c} 0.39 \pm 0.06 \\ 0.38 \pm 0.14 \\ 0.31 \pm 0.02 \\ \sim 0.2 \\ 0.6 \pm 0.2 \\ 0.32 \pm 0.03 \\ 0.48 \pm 0.13 \\ 0.35 \pm 0.05 \\ 0.64 \pm 0.02 \\ \sim 0.2 \\ \sim 0.2 \\ \sim 0.2 \\ 0.47 \pm 0.08 \end{array}$	$\begin{array}{c} 1.14\pm 0.21\\ 1.08\pm 0.50\\ 4.5\pm 1.3\\ 1.58\pm 0.29\\ 2.04\pm 0.19\\ 23\pm 11\\ 1.21\pm 0.89\\ 0.56\pm 0.26\\ 0.277\pm 0.076\\ 42.9\pm 3.9\\ 7.3\pm 3.4\\ 4.4\pm 3.3 \end{array}$	$\begin{array}{c} 0.461 \pm 0.021 \\ 0.0740 \pm 0.0035 \\ 0.1473 \pm 0.0079 \\ 0.166 \pm 0.016 \\ 0.0408 \pm 0.0026 \\ 0.2100 \pm 0.0050 \\ 0.0739 \pm 0.0060 \\ 0.493 \pm 0.018 \\ 1.869 \pm 0.060 \\ 0.0371 \pm 0.0028 \\ 0.0342 \pm 0.0023 \\ 0.0251 \pm 0.0046 \end{array}$	1.1 7 1.1 5 6.8 3 1.3 7 3.5 4 3.2 4 1.1 9 2.7 4 1.1 4 3.5 5 1.2 5 1.2 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[1,2] [1,3] [1,4] [5] [1,4] [1,7] [1,4] [1,8] [9,10 [11] [1,7]	bin EM bin EM EM EM EM bin bin bin	37 59 466 21 18 1120 154 356 288 21 13 40	100.6 97.8 -292.4 -109.8 64.0 111.5 206 224 140 -175.7 -381.7 -13.6	4.3 5.8 9.5 1.8 3.6 9.1 15 11 17 5.0 2.5 6.3	(12) (13) (14) (15) (16) (17) (18) (17) (19) (20) (21) (22)	10° 10 ³ 10 ² 10 ¹ 10°	SgrII -300 0 300	-300 0 300 v _r (km/s)	+ ₩il1 = = = = = = = = = = = = =

DM density profiles computed from posterior distributions of best-fit parameters.

Astrophysical factors (Einasto profile) for DM annihilation and decay computed from posterior distributions of best-fit parameters as a function of the integration angle.

Scaling relations for the astrophysical factors as a function of the dSph distance.

cherenkov telescope array

Summary

Conclusions
Future work

Conclusions

- Indirect DM searches are a hot topic in modern astrophysics.
 - Constraining DM parameters (particle mass, cross section, decay time)
 - Inferring the physical conditions of the primordial Universe
- Reliable determination of the precise amount and distribution of DM in halos around astrophysical sources is of paramount importance.
 - Need of developing robust techniques dedicated to such an issue
 - Need of targeting robust objects (MW center, dSphs, galaxy clusters)
- DM density profiles of dSph halos can be computed from MCMC Jeans analysis on their confirmed member stars.
 - Calculation of astrophysical factors for DM self-interaction processes
 - Selection of best targets for indirect DM searches
 - Derivation of scaling relations with target distance

Future work

- X-check the MCMC Jeans analysis of dSph halos with results from other set-ups and techniques.
- Improvement of the MCMC technique.
 - Treatment of the brightness profile as a set of free parameters
 - Improvement of the membership estimation for dSph stars
- Discovery of new targets and knowledge improvement of the existing ones.
 - New dSphs from more sensitive sky surveys
 - Increase of the stellar samples available for the ultra-faint targets

Agenzia Spaziale Italiana

Thank you!

cherenkov telescope array

Supplementary material

- Build-up of the expected γ -ray flux from DM self-interaction
- Robustness of the astrophysical DM reservoirs
- Expected density profiles in DM halos
- Mathematical derivation of the Jeans equation
- Caveats on the determination of astrophysical factors

WIMP pair annihilation into SM pairs (Bergström+ 1998):

WIMP particle decay into SM pairs: ۲

Building up the expected γ-ray flux from DM selfinteraction (e.g., annihilation):

• Differential photon number produced in 1 annihilation event

$$f_{\gamma}^{(i)} = \mathrm{BR}_i \frac{dN_{\gamma}^{(i)}}{dE_{\gamma}}$$

Probability of impact for 2 DM particles

$$\frac{d\mathcal{N} \times d\mathcal{N}}{2} = \frac{1}{2}n^2(\ell; \Omega)\sigma_{\rm ann}vdtd\mathcal{V} = \frac{\rho_{\rm DM}^2(\ell; \Omega)}{2m_{\chi}^2}\sigma_{\rm ann}vdtd\mathcal{V}$$

• Differential flux for elementary volumes

$$\frac{(d\mathcal{N})^2/2}{4\pi d_{\oplus}^2 dt} \times \sum_{i} f_{\gamma}^{(i)} = \frac{\sigma_{\mathrm{ann}} v}{8\pi m_{\chi}^2} \times \sum_{i} \mathrm{BR}_{i} \frac{dN_{\gamma}^{(i)}}{dE_{\gamma}} \times \frac{\rho_{\mathrm{DM}}^2(\ell;\Omega)}{d_{\oplus}^2} d\mathcal{V}$$

Integration over volume and velocity average

$$\frac{d\Phi_{\rm ann}}{dE_{\gamma}} = \frac{\langle \sigma_{\rm ann} v \rangle}{8\pi m_{\chi}^2} \sum_{i} BR_{i} \frac{dN_{\gamma}^{(i)}}{dE_{\gamma}} J(\Delta\Omega)$$

Signal intensity vs. detection robustness of the known/supposed DM reservoirs:

DETECTION ROBUSTNESS

Elementary derivation of the kinematics in a DM halo:

BULGE	DISK	HALO
$\rho(r) = \mathbf{const} = \rho_0$	$M(r) \approx \mathbf{const} = M_{\mathrm{bulge}}$	$v(r) \approx \mathbf{const} = v_{\infty}$
$\nabla^2 \Phi = \frac{1}{r^2} \left[\frac{d}{dr} \left(r^2 \frac{d\Phi}{dr} \right) \right] = -4\pi G \rho_0$	$\Phi(r) = \frac{GM_{\text{bulge}}}{r}$	$\Phi(r) = \Phi_s - v_\infty^2 \ln\left(\frac{r}{r_s}\right)$ $d\Phi$
$\sum_{r=0}^{2} \frac{d\Phi}{dr} - r^{2} \frac{d\Phi}{dr} \bigg _{r=0} = -\frac{4}{3}\pi G\rho_{0}r^{3}$	$r\frac{d\Phi}{dr} = -\frac{GM_{\rm bulge}}{r}$	$r - v_{\infty}$ $\frac{1}{2} \left[\frac{d}{dr} \left(r^2 \frac{d\Phi}{dr} \right) \right] = - \left(\frac{v_{\infty}}{2} \right)^2 = -4\pi G \rho(r)$
$v(r) = 2r\sqrt{\frac{\pi}{3}G\rho_0} \propto r$	$v(r) = \sqrt{\frac{GM_{\text{bulge}}}{r}} \propto r^{-1/2}$	$\rho(r) = \frac{v_{\infty}^2}{4\pi G r^2} \propto r^{-2}$

DM density profiles proposed in the literature to explain the rotation curve features found in observations and cosmological simulations:

- 1. Einasto (1965, cuspy to cored)
- 2. Zhao (1996) & Hernquist (1990, cuspy to cored)
- 3. Burkert (1995, cored)
- 4. Navarro, Frenk & White (1996, cuspy)

Mathematical derivation of the 2nd-order Jeans equation:

FIRST CAVEAT: we are dealing with projected quantities (2D instead of 3D) and potential triaxiality.

SECOND CAVEAT: no idea about the tangential velocities of the member stars.

<u>THIRD CAVEAT</u>: uncertain origin of dSph kinematics (mini-DM halos vs. remnants of tidal disruptions).

FOURTH CAVEAT: foreground stellar populations contaminating the member sample.

<u>FIFTH CAVEAT</u>: unreliable stellar samples for objects with small numbers of members.

ID	R (pc)	$v_r (\mathrm{km} \mathrm{s}^{-1})$	$\delta v_r({\rm km~s^{-1}})$	Data set
l	1.9	-381.4	1.3	K&M
	5.0	-380.7	2.4	K&M
	8.5	-382.1	2.1	K&M
	10.2	-384.9	3.2	K
	10.3	-383.1	4.9	Μ
	10.7	-389.0	2.3	K&M
1	11.2	-373.8	1.4	K&M
	19.4	-387.0	3.8	Μ
	21.2	101.1	6.6	M.
0	30.3	-362.8	5.6	М
1	31.4	-397.1	7.8	м
2	32.7	-404.7	5.1	Μ
3	36.8	-387.1	7.7	Μ
4	80.4	-375.8	3.1	Μ

ID (K15a)	ID (M16)	R.A. (J2000)	Decl. (J2000)	Radius (arcmin)	$(g_{\rm P1})_0$ (mag)	$\delta g_{\rm P1}$ (mag)	$(i_{\rm P1})_0$ (mag)	$\delta i_{\rm P1}$ (mag)	Masks	$\frac{S/N^{a}}{(A^{-1})}$	(km s^{-1})	$\sigma(v)$	Member?
	22	02 13 12.69	+36 08 49.4	2.11	20.71	0.09	20.34	0.09	cdefg	44.5	-380.6 ± 3.0	0.6	Y
128		02 13 14.24	+36 09 51.1	1.06	19.93	0.03	19.41	0.03	bdeg	25.0	-383.3 ± 1.8	0.4	Y
116	21	02 13 15.96	+36 10 15.8	0.53	20.38	0.02	19.92	0.02	bcdeg	26.4	-381.4 ± 3.2	0.9	Y
106	40	02 13 16.55	+36 10 45.8	0.19	17.34	0.01	16.58	0.01	bdef	219.5	-381.6 ± 1.6	0.4	Y
91	20	02 13 19.32	+36 11 33.3	0.93	20.33	0.03	19.79	0.03	bcfg	29.7	-380.1 ± 4.9	1.7	Y
76	23	02 13 20.61	+36 09 46.5	1.12	20.83	0.06	20.53	0.06	bcg	17.0	-385.2 ± 4.2	1.3	Y
	27	02 13 21.35	$+36\ 08\ 29.1$	2.36	21.30	0.07	21.27	0.07	cd	20.0	-376.8 ± 11.7	1.6	Y
65	46	02 13 21.54	+36 09 57.4	1.11	19.03	0.01	18.42	0.01	bdfg	81.8	-381.0 ± 5.9	3.0	Y
	24	02 13 22.00	+36 10 25.9	0.97	21.22	0.07	21.14	0.07	d	17.8	-370.4 ± 17.1		Y
	26	02 13 24.83	+36 10 21.8	1.54	21.40	0.11	21.17	0.11	с	19.9	-375.6 ± 11.2		Y
	9	02 13 27.33	+36 13 30.5	3.45	21.25	0.10	21.05	0.10	d	17.6	-387.6 ± 7.7		Y
	29	02 13 30.95	+36 11 56.0	3.00	21.96	0.20	21.68	0.20	с	14.0	-386.2 ± 4.7		Y
	31	02 12 52 66	1 36 13 24 1	7.61	20.63	0.03	20.12	0.03	odo	42.8	2771 + 27	0.0	v
	25	02 13 17.14	+36 07 14.1	3.47	21.15	0.05	21.07	0.05	cd	21.3			? ^b

binary star

total sample dimension: 14 stars revised sample dimension: 13 stars

