Implications of Binary Black Hole mergers for cosmology

S. Mastrogiovanni Vulcano Workshop 2022 - Sept 26th Elba Island

A pedagogic introduction: 5M-D. Steer, "<u>Andbook of Gravitational Wave Astronomy</u>" (2022) A recent review: 5M+, "<u>Cosmology with Gravitational Waves, A review</u>" (2022) The last LyK results: LVK, "<u>Constraints on the cosmic expansion history from GWTC-3</u>" (2021).

Image credit: L. Relli - INFN

The standard cosmological model?

According to General Relativity, and confirmed by many observations, the Universe is expanding with a rate described by

$$\frac{H(z)}{H_0} = \sqrt{\Omega_{m,0}(1+z)^3 + \Omega_{\Lambda} + \Omega_r(1+z)^4 + \Omega_k(1+z)^2}$$

Hubble Dark matter Dark energy Radiation Curvature constant

Despite its success in the standard cosmological model suffers:

- > **Theoretical issues:** What is the nature of Dark Energy?
- Observational issues: Why the measure of the Hubble constant does not agree at the level of the CMB and today? [A. Reiss, ApJL 934 (2022)]

Gravitational Waves from cosmic distances

Source frame

Detector frame

Gravitational Waves from cosmic distances

In order to measure the expansion of the Universe we need to know the source's **distance** and **recessional velocity**

1 AU 1 pc 100 pc 1 kpc 100 kpc 1 Mpc 100 Mpc 1 Gpc 10 Gpc

Distances with Electromagnetic observations

Distances with GW observations

Compact binary coalescenses

From GWs we can not measure the source redshift (escaping velocity)

In recent years, we used several methods to assign a redshift to GW sources

- **Bright sirens:** An associated Electromagnetic (EM) counterpart (GRB, Kilonova etc...) can provide the identification of the host galaxy.
- Dark sirens: Galaxy surveys can be used to identify possible hosts in the GW localization volume.
- **Spectral sirens:** Knowledge of the source-frame mass distribution can be used to assign a redshift to GW sources.

Bright sirens: Cosmology with GW170817

• **GW170817:** A binary neutron star merger detected by LIGO and Virgo. From the GW, source distance ~ 40 Mpc [LVK+, ApJL, 848 (2017)].

Bright sirens: Cosmology with GW170817

OBSERVATOIR

Bright sirens: Cosmology with GW170817

50 **GW170817:** A binary neutron star merger detected by LIGO and Virgo. From the GW. 40 source distance ~ 40 Mpc [LVK+, ApJL, 848 (2017)]. Short Gamma-ray burst and Kilonova: Two 30 dر[Mpc] associated EM counterparts allowed the identification of the source host galaxy 20 NGC4993. [LVC+, Nature (2017)] This type of events will difficult to detect, we 10 . $H_0 = 70^{+12}_{-8}$ km s⁻¹ Mpc⁻¹ might expect to have 0-10 others in the next GW170817 two observing runs [SM+ A&A (2017), Patricelli+, 0 MNRAS (2022)] 0.000 0.005 0.010 0.015 0.020

8

Z

Dark sirens: Cosmology aided by galaxy surveys

- In the case that the GW is not observed with EM counterpart, we can use galaxy catalogs to identify possible galaxy hosts [Schutz, Nature 1986].
- Galaxy surveys will provide possible redshifts.
- GW will provide luminosity distance.
- Best localized events provide better constraints for cosmology.

OBSERVATOIRI

Dark sirens: Cosmology aided by galaxy surveys

10

- A cosmological model has statistical support when the GW localization matched an *overdensity* of galaxies.
- Galaxy catalogs are not complete at higher redshifts, we need to apply corrections in order to now bias our analyses [*R. Gray+, PRD* (2019)]

Simone Mastrogiovanni - Vulcano Workshop 2022 - Sept 26th Elba Island

() OBSERVATOIRE

C SMERGE

Spectral sirens: GW-only cosmology

- Many GW are detected with large sky localizations and are very far (galaxy catalogs highly incomplete).
- If BBHs are *preferentially* produced at a given mass, we can exploit the mass-redshift relation to assign a redshift to the GW source [SM+, PRD 104 (2021)].

$$m_{1,\text{det}} = m_{1,\text{s}}(1+z)$$

Spectral sirens: GW-only cosmology

• If we assume an overdensity of BBHs produced at 35 solar masses, some "extreme" cosmologies can not fit the overdensity of BBHs.

Spectral sirens: GW-only cosmology

Simone Mastrogiovanni - Vulcano Workshop 2022 - Sept 26th Elba Island

13

GW cosmology after GWTC-3

- During O1 (~4 months):
 3 confident BBHs
- During O2 (~8 months):

- 7 confident BBHs
- 1 confident BNS+EM counterpart

٨NR

- During O3 (~12 months):
 - 1 consistent with BNS masses (GW190425)
 - 4 events compatible with NSBH masses
 - 2 events compatible with BNS masses
 - \circ ~80 confident BBHs.
 - Tentative EM counterpart from GW190521

GW cosmology after GWTC-3: Spectral sirens

OBSERVATOIRE

C SMERGE

15

GW cosmology after GWTC-3: Spectral sirens

C SMERGE

GW cosmology after GWTC-3: Spectral sirens

The only EM information is the counterpart of GW170817

H₀ posterior of the 3 mass models combined with GW170817 posterior

OBSERVATOIRE

C SMERGE

ARTEL

Simone Mastrogiovanni - Vulcano Workshop 2022 - Sept 26th Elba Island

18

GW cosmology after GWTC-3: Dark sirens

Main result of the paper showing various H0 posteriors.

We select the K-band for the luminosities of galaxies and the preferred mass model (powerlaw+Gaussian peak)

OBSERVATOIRE

C SMERGE

GW cosmology after GWTC-3: Dark sirens

Systematic plot showing the H0 different posteriors when **varying**:

- 1) **population parameters** (top plot)
- 2) galaxy catalog parameters (bottom plot)

Varying certain population parameters affects the H0 posterior significantly

Varying galaxy catalog parameters affects the H0 posterior only marginally

20

GW cosmology after GWTC-3: Dark sirens

Key messages:

- H₀ constraint still driven by the bright siren GW170817, but **dark sirens are already making a significant difference**.
- Without very good sky localizations, results are sensitive to BH population model parameters.
- For **O4 and beyond**: higher GW event rates plus deeper galaxy surveys and improved (cosmo+pop) modelling

LISA

 \square

Cosmic Explorer

2035+

https://observing.docs.ligo.org/plan/

Simone Mastrogiovanni - Vulcano Workshop 2022 - Sept 26th Elba Island

23

The era of 3G detectors is going to be absolutely amazing:

- Potentially no selection bias for BBHs, almost 100000 detections per year.
- Some selection bias for BNSs, but we are almost complete up to redshift 0.5.

OBSERVATOIRI

٨NR

C SMERGE

Thank you for your attention

Pulsational pair instability

OBSERVATOIRE

SMERGE

Credit: LVK BBHs population webinar 2021

 Produce stars of similar mass, which collapse to form black holes around ~ 35 to 45 *M*^o

GW190814

- The best localized event from O1, O2 and O3 without EM counterpart is GW190814.
- Apart from G190814, GLADE+ is highly incomplete for most of the GW events considered.

Galaxy catalog completeness: Fraction of galaxies with absolute magnitude brighter than a magnitude threshold

