

Search for High Energy Astrophysical Neutrinos Experimental status

Antonio Capone

Astrophysical v detection

- Why?
- How?
- Where?

The v, γ , HE C.R. connection

 Multi-messenger search for H.E. astrophysical sources

Results from Cherenkov v Telescopes

Motivations for High Energy Neutrino Astrophysics

Detecting neutrinos in H₂O

Proposed by Greisen, Reines, Markov in 1960

Neutrino Telescopes: signal and background

Cherenkov v Telescope: Detection principle

Search for neutrino induced events, mainly $v_{\mu} N \rightarrow \mu X$, deep underwater

Down-going µ from atm. showers S/N ~ 10-6 at 3500m w.e. depth

p, nuclei

Neutrinos from cosmic sources induce 1-100 muon evts/y in a km³ Neutrino Telescope

p, nuclei

- Atmospheric neutrino flux $\sim E_v^{-3}$
- Neutrino flux from cosmic sources ~ E_v⁻²
 - Search for neutrinos with E_v>1÷10 TeV
- ~TeV muons propagate in water for several km before being stopped
 - go deep to reduce down-going atmospheric μ backg.
 - long µ tracks allow good angular reconstruction

For
$$E_v \ge 1 TeV$$
 $\theta_{\mu\nu} \sim \frac{0.7^{\circ}}{\sqrt{E_v[TeV]}}$

Up-going μ from neutrinos generated in atm. showers $S/N \sim 10^{-4}$

High Energy v Telescopes world map

Cherenkov v Telescope: science goals

CC –SN v MeV v Oscillations $10 < E_v < 100 \text{ GeV}$

Indirect D.M search $GeV < E_v < 100 GeV$

Astroph. Sources TeV < E_v < EeV

GZK ν, ... > EeV

- v from SN
- v Oscillations
- v Hierarchy
- Sterile v

- D. M. search
- Monopoles
- Nuclearites
- v from extraterrestrial sources
- Hadronic-leptonic ?
- Origin, acceleration mechanism of HE CR

U.H.E. C.R. nature and propagation

Cherenkov v Telescope: science goals

Extragalactic

Active Galactic Nuclei

Search for point-like cosmic Neutrino Sources

- improves the signal detection Their identification requires a detector with accurate
- angular reconstruction Search for sources from catalogue
- Auto-correlation search

Their identification out of the more intense background of atmospheric neutrinos (and μ) is possible at very high energies ($E_{\mu} \gg TeV$) and requires good energy reconstruction.

Search for Diffuse flux of Cosmic Neutrinos

- **Neutrinos from:**
 - **Unresolved AGN**
 - "Z-bursts"
 - "GZK like" proton-CMB interactions
- Top-Down models v

IceCube: a flux of "diffuse" v identified since 2013

In operation at the South Pole since 2010 Sensitive to TeV – PeV neutrinos

$$\frac{d\phi}{dE} = 6.45 \left(\frac{E_{\nu}}{100 TeV}\right)^{-2.89} 10^{-18} [GeV^{-1}cm^{-2} \ s^{-1} \ sr^{-1}]$$

ANTARES: sensitive to the IC "diffuse" v flux

In operation 2008 - 2022 Sensitive to TeV - 100 TeV ν

Ap.J.Lett. 853 (2018) 1, L7 https://pos.sissa.it/358/891/pdf-(ICRC19)

Search for an excess of high-energy events w.r.t atmospheric neutrinos

- Selection cuts optimized with MRF procedure (assumed spectral index Γ=2.5)
- Look for event excess above a given Eth both for track & shower samples
- Data with E> Eth: 50 events (27 tracks + 23 showers)

DATA sample 2007-2018

- Background with E> Eth (atm. Flux=HONDA + Enberg): 36.1 ± 8.7 (19.9 tracks +16.2 showers)
- \rightarrow 1.8 σ excess of events with E> Eth, assumed as cosmic flux (red histogram)

Results fully compatible with IceCube diffuse flux

IceCube & ANTARES: search for "diffuse" v flux from galactic ridge

Neutrinos carry direct information on CR propagation:

- -Non-homogeneous diffusion can enhance γ and ν emission
- -Molecular clouds/dense environments boost γ and ν fluxes
- neutrino signal expected from the Galactic Ridge (gamma-ray data)
- v flux related to the primary CRs spectrum, if no cut-off below 1 PeV in CR flux
- Analysis in 2016 (7 y data 2007-2013) gives limits close to expectation without cutoff

Galactic ridge region : $|I| < I_{ridge} \approx 30-40^{\circ}$ and $|b| < b_{ridge} \approx 2-3^{\circ}$

Using the full ANTARES dataset, a sensitivity below the extrapolated gamma-ray is expected

Astrophys.J. 868 (2018) no.2, L20

 at most 10% of the all-sky diffuse flux detected by IceCube can be of Galactic origin

NO evidence above background

The "diffuse" v-y-CR fluxes connection

ANTARES: search for point like v sources

- 13 years (2007-2020) data sample: 3845 days, 10162 traks, 225 showers
- Searching for a statistical excess from given sky point (sources catalogue)

PRD 96, 082001 (2017) PoS(ICRC2021)1161

pre-trial p-value: (4.3σ) (48% post)

Within 1 degree from J0242+1101

Using a pre-definite candidate-list search: **121** investigated sources

With a unbinned full-sky search

2nd most significant cluster: $RA=343.8^{\circ}\delta=+23.5^{\circ}$

Pre-trial: 4.2 σ

Close to blazar MG3 J225517+2409

IceCube & ANTARES: search for point like v sources

Skymap of pre-trial p-values for the combined ANTARES 2007/12 and IceCube 40, 59, 79 point-source analyses.

ANTARES: search for point like v sources

Point like v sources with a multi-messengers approach

For steady sources (AGN, ...): signal and background integrated over long time

- search for a statistical evidence in the distribution of tracks around the source
- S/B favoured at high energy

For transient sources (GW, flaring blazars, GRBs, ...): signal and background integrated over emission time:

- e.g.: negligible background for GRB neutrinos
- relaxed selection criteria, increased efficiency for neutrinos
- need for an external trigger

The multi-messengers search program with ANTARES

common working group (GWHEN) S. Adrián-Martínez et al., JCAP 06 (2013) 008

ANTARES ← AUGER

Adrian-Martinez et al., ApJ 774 (2013) 008

Flaring Sources

(v emission from γ-flaring blazars/μQuasars)

ANTARES
Gamma-Rays
X-Rays

blazars: APP 36 (2012) 304; μQuasars: <u>JHEAp</u>, 3-4 (2014) 9-7

(Telescopes – ANTARES Target of Opportunity)

Optical follow-up of neutrino alerts for transient source search (GRBs, SNae). Analysis in progress!

GCN (Gamma-ray Coordination Network)

ANTARES - GCN

A&A 559, A9 (2013), JCAP 1303 (2013) 006

Optical Telescopes

TAROT & ROSTE + more

Ageron et al., Astrop. Phys 35 (2012) 530-536

IceCube & FERMI a v triggered observation of TXS

0506+056 blazar emission

Synchrotro nverse-Compton

Very H.E. (~290 TeV) event announced by IceCube with a GCN notice 43s after the trigger

refined best-fit direction IC170922A

IC170922A 50% - area: 0.15 square degrees IC170922A 90% - area: 0.97 square degrees

FERMI

77.6°

3FGL 78.0°

Observed a blazar with $\Lambda\theta\sim0.06^{\circ}$

77.2° Right Ascension

coincidence with $E_{\gamma} > 100 \text{GeV}$

IceCube: searching for other v from TXS 0506+056 blazar

More neutrinos (~10) emission from the direction of the blazar TXS 0506+056 IceCube-170922A alert", IceCube Collaboration: M.G. Aartsen et al. Science 361, 147-151 (2018). pointing to TXS0506+056

 3.5σ evidence (a-priori following predefined tests procedures)

E. Resconi | RICAP-2022

IceCube & ANTARES: search for v – Radio bright blazars

Search for spatial and temporal coincidence of neutrinos with radio blazars

2774 radio-bright blazars investigated.

No significant evidence of neutrino flare found.

G. Illuminati @Neutrino2022

Notable case of **J0242+1101** (PKS 0239+108)

Post-trial p-value of 56% (40%) for the Gaussian (Box) shape.

ANTARES: multimessenger search for v GRBs

ANTARES: searching for v from 784 GRBs (10 years)

ANTARES, MNRAS 500, 5614-5628 (2021)

Search for spatial & temporal coincidence with gamma-ray emission:

NO neutrino event found in coincidence with the prompt phase of the long GRB sample

Search for v from the source of GW170817

Advanced LIGO and Advanced Virgo observatories reported GW170817 (binary neutron star inspiral).

A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi-GBM and INTEGRAL.

ANTARES, IceCube, and Pierre Auger Observatories searched for high-energy neutrinos from the merger in the GeV–EeV energy range .

No neutrinos directionally coincident with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. No neutrino found in an extended search in the direction within the 14-day period following the merger.

ANTARES: search for v - GW common sources

39 gravitational wave sources in GWTC-2 catalog

- 37 sources followed with ANTARES data (2 during downtime)
- Total expected background: ~0.38 events over the 37 GWs
- Observed number of events: 0 for all sources

M. Lamoureux @Neutrino2022

... not only neutrino astrophysics...

... also open problems in particle physics ...

- Dark Matter searches:
 - Neutralino annihilation in Sun, Earth, Galactic Center
- Magnetic Monopoles
- Particle acceleration mechanisms
- Multi-messenger searches
- Neutrino Oscillations
- Search for Sterile Neutrinos

search for excess observed over the expected backg. Neutralino search: $\chi\chi \rightarrow \nu + ...$

Antonio Capone

Log_(Ψ[°])

Indirect searches from Dark Matter: v from massive bodies (Sun, Galactic center, ...)

Galactic Centre → annihilation cross-section

$$\frac{d\Phi_{\nu_{\mu}+\bar{\nu}_{\mu}}}{dE_{\nu_{\mu}+\bar{\nu}_{\mu}}} = \frac{\langle \sigma \nu \rangle}{8\pi M_{WIMP}^2} \cdot \frac{dN_{\nu_{\mu}+\bar{\nu}_{\mu}}}{dE_{\nu_{\mu}+\bar{\nu}_{\mu}}} \cdot J_{int}(\Delta\Omega)$$

Phys. Rev. D 102, 082002 (2020)

Sun → scattering cross-section

Solid lines: ANTARES

Dashed: IceCube

Dot-Dashed: SuperK

C. Poiré@Neutrino2022

Baikal-GVD construction status and schedule

Status 2022: 10 clusters, 5 laser stations, experimental strings

Deployment schedule

Year	Number of clusters	Number of OMs
2016	1	288
2017	2	576
2018	3	864
2019	5	1440
2020	7	2016
2021	8	2304
2022	10	2880
2023	12	3456
2024	14	4032
2025	16	4608
2026	18	5184

Single-cluster muon neutrino candidates

Sensitivity of analysis was improved with new reconstruction and neutrino selection methods

Event reconstruction:

- Hit finder: efficient hit-finding algorithm [PoS-ICRC2021-1063]
- Track fit: $\chi^2(t)$ based fitter
- Energy estimation based on dE/dX proxy
- Neutrino selection based on BDT

A sample of 106 neutrino candidate events was obtained for 326 days of single-cluster livetime

- Factor ~2 improvement with respect to previous analysis
- An MC expectation: 81.2 events ⇒ possible ~30% contamination with background in data

An effort to extend single-cluster analysis to the full dataset is ongoing

Cascades detection with GVD Cluster

cascades:

2°-4° - median value of

Energy resolution: δE/E ~ 10%-30%

Conclusion

- ➤ Baikal-GVD is now the largest neutrino telescope in the Northern Hemisphere and growing
- > Modular structure of GVD design allows a search for HE neutrinos and multimessenger studies at the early phases of array construction.
- >Observations of atmospheric neutrinos by Baikal-GVD agree with expectations
- First 25 astrophysics neutrino candidate events have been selected -Baikal-GVD confirms IceCube observation of astrophysical diffuse neutrino flux at 3σ level

OUTLOOK

- \geq 2025/2026 \sim 1km³ GVD with total of 16-18 clusters
- ➤ 2022-2024 "Conceptual Design Report" for next generation neutrino telescope in Lake Baikal

by courtesy of Koljia Budnev

18

KM3NeT the future of v astronomy in the Mediterranean

- Multi-site, deep-sea neutrino telescope
- Selected by ESFRI roadmap
- Single collaboration, Single technology

<u>KM3NeT 2.0: Letter of Intent</u>
J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001

Astroparticle Research with Cosmics In the Abyss

700 or 200

ARCA construction phase

ARCA Reconstruction Performances

Track-like and shower-like events

Tracks (v_µ CC) ideal tool for astronomy

- Ang. Resol. < 0.2° above 10 TeV
- Energy Resol. ~ 0.27 in $log_{10}(E_{reco}/E_{\mu})$ (10 TeV < E_{μ} < 10 PeV)

Shower (v_x NC + v_e CC) contained events

- Ang. Resol. < 2° above 50 TeV
- Energy Resol. < 5%

KM3NeT vs IceCube:

Con: ⁴⁰K background, bioluminescence, need for real-time positioning, deep-sea operations Pro: ⁴⁰K calibration, better view of the galactic center, no bubbles/dust —> better angular resolution

ARCA very preliminary results

- Single-DOM measurement
- Useful to validate the calibration process
- Results compared with ANTARES and Bugaev model

Eur. Phys. J. C 80 (2020) 99

At present taking data with 21 lines. Funding assured, procurement and construction in progress, for ~130 strings

ORCA very preliminary results

- Oscillation fit, binned in E_{reco}, θ_{zenith}
- Normalization left free, various systematics on flux, energy scale, tau- and NC normalization

Summary

High Energy Neutrino astrophysics has an important role in the Multi-messenger contest

- Absolute and precise pointing to the source
- Wider horizon
- Provides information:
 - On the nature of the source (Hadronic ??, Leptonic ??)
 - On the acceleration of parent particle

High Energy neutrino astrophysics started:

- Diffuse v flux measured
- H.E. v events (IceCube) associated with known gamma sources

New large and high resolution detectors (KM3NeT, IceCube Gen2, BAIKAL/GVD) in construction (or under project: P-One?) ready to work in a Multi-messenger framework