

NA62 results on Dark Sector searches

Jan Jerhot*

Center for Cosmology, Particle Physics and Phenomenology Université Catholique de Louvain

Vulcano Workshop, Elba, Italy; September 30, 2022

^{*}On behalf of the NA62 Collaboration

Introduction

Direct search for New Physics (NP) at intensity frontier with fixed-target experiments:

- Complementary to energy frontier (LHC) and indirect searches (precision measurements, LNV, etc.);
- $\bullet \ \ Smaller \ masses \ (typically \ MeV-GeV \ scale) \ but \ much \ lower \ couplings \ accessible \ (large \ statistics);$
- Not a direct search for Dark Matter (DM) particles but for a SM-DM mediator (dark sector portal):

NP Particle	$_{ m type}$	SM portal (dim ≤ 5)
HNL (N_I)	fermion	$F_{lpha I}(ar{L}_{lpha}H)N_{I}$
dark photon (A'_{μ})	vector	$-(\epsilon/2\cos\theta_W)F'_{\mu\nu}B^{\mu\nu}$
dark Higgs (S)	scalar	$(\mu S + \lambda S^2)H^{\dagger}H$
axion/ALP (a)	pseudoscalar	$(C_{aX}/\Lambda)aX_{\mu\nu}\tilde{X}^{\mu\nu}, (C_{af}/\Lambda)\partial_{\mu}a\bar{f}\gamma^{\mu}\gamma^{5}f$

Introduction

Direct search for New Physics (NP) at intensity frontier with fixed-target experiments:

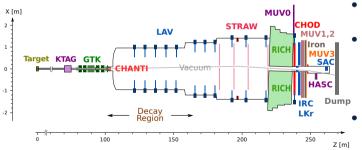
- Complementary to energy frontier (LHC) and indirect searches (precision measurements, LNV, etc.);
- Smaller masses (typically MeV-GeV scale) but much lower couplings accessible (large statistics);
- Not a direct search for Dark Matter (DM) particles but for a SM-DM mediator (dark sector portal):

NP Particle	type	SM portal (dim ≤ 5)
$HNL(N_I)$	fermion	$F_{\alpha I}(\bar{L}_{\alpha}H)N_{I}$
dark photon (A'_{μ})	vector	$-(\epsilon/2\cos\theta_W)F'_{\mu\nu}B^{\mu\nu}$
dark Higgs (S)	scalar	$(\mu S + \lambda S^2)H^{\dagger}H$
axion/ALP (a)	pseudoscalar	$(C_{aX}/\Lambda)aX_{\mu\nu}\tilde{X}^{\mu\nu}, (C_{af}/\Lambda)\partial_{\mu}a\bar{f}\gamma^{\mu}\gamma^{5}f$

Two types of direct searches for NP particles at fixed-target experiments:

- NP particle decay to SM particles reconstruction of original particle from the SM final states
- ullet NP particle production in SM particle decays reconstruction from both initial and final state particles

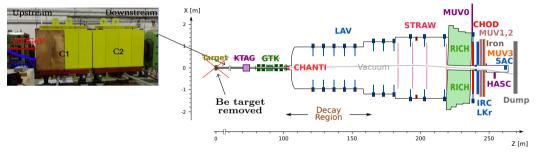
NA62 experiment can do both in two modes of operation - kaon mode and beam-dump mode + indirect searches from testing the SM predictions at NA62 (see talk by E. Goudzowski)


NA62 experiment

- Fixed-target experiment at CERN SPS (north area).
- Main goal: measure ultra-rare $K^+ \to \pi^+ \nu \bar{\nu}$ with 10% precision, yet NA62 covers a broad kaon and beam-dump physics program.
- Data-taking period 2016-18 (Run 1): $K^+ \to \pi^+ \nu \bar{\nu}$ analysis of Run 1 data set published, 1 2021-25: Run 2 ongoing.

NA62 experiment in kaon mode

- 400 GeV/c primary p^+ beam impinges Be target, 75 GeV/c secondary beam selected ($\sim 6\%$ of K^+) using **TAX** collimators
- K^+ decay-in-flight in 60 m long fiducial volume (FV)²;


- K⁺ tagged by KTAG and 3-mom. determined by GTK;
- Decay products' 3-mom. measured by STRAW, time measured by CHOD PID given by LKr, MUV1, MUV2 and RICH;
 - μ ID provided by **MUV3**;
- Photons can be vetoed by LKr and at large angles by 12 LAV stations or by SAC/IRC at small angles;

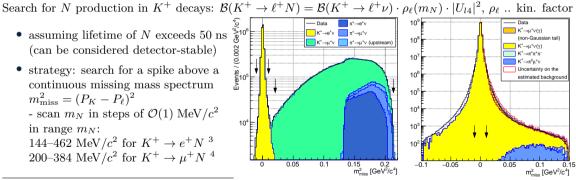
• Overall experimental time resolution reaches $\mathcal{O}(100)$ ps

²The beam and detector of the NA62 experiment at CERN. NA62 Collaboration. 2017 HNST-12 P05025, ‡1703€08501] ○

NA62 experiment in beam-dump mode

• target removed and TAX closed;

- KTAG and GTK not used;
- improved sweeping from magnets between TAX and FV to reduce muon halo background;
- beam intensity $\times 1.5$ of nominal;
- two trigger lines for charged particles: Q1/20 (≥ 1 hits in CHOD), H2 (> 1 in-time hit in CHOD)
- $(1.4 \pm 0.28) \times 10^{17}$ protons on target (POT) collected in 2021 from 10^{18} POT to be collected in Run 2;


Search for heavy neutral leptons (HNL)

General form of the portal: $\mathcal{L} \supset F_{\alpha I}(\bar{L}_{\alpha}H)N_{I}$

• from diagonalizing mass terms for neutrinos \Rightarrow mixing $\nu_{\alpha} - N_I$, which can be parametrized by $U_{\alpha I}$

- assuming lifetime of N exceeds 50 ns (can be considered detector-stable)
- strategy: search for a spike above a continuous missing mass spectrum $m_{\text{miss}}^2 = (P_K - P_\ell)^2$
 - scan m_N in steps of $\mathcal{O}(1)$ MeV/ c^2 in range m_N :

 $144-462 \text{ MeV}/c^2 \text{ for } K^+ \to e^+ N^{-3}$ $200-384 \text{ MeV}/c^2 \text{ for } K^+ \to \mu^+ N^{-4}$

³Search for heavy neutral lepton production in K⁺ decays to positrons, NA62 Collaboration, Phys. Lett. B 807 (2020) 135599, [2005.09575]

⁴Search for K⁺ decays to μ and invisible particles. NA62 Collaboration. Phys. Lett. B 816 (2021) 136259, [2101.12304] \circ

Search for heavy neutral leptons (HNL)

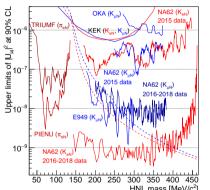
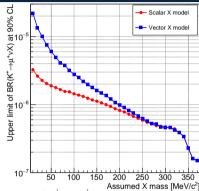



Figure: UL @90% CL on $|U_{\ell 4}|^2$ from production searches⁴, red: $|U_{e4}|^2$, blue: $|U_{\mu 4}|^2$.

- For $|U_{e4}|^2$: UL at the level 10^{-9}
- For $|U_{\mu 4}|^2$, UL at the level 10^{-8}

- Search for $K^+ \to \mu^+ \nu X$ decay performed at the same dataset obtaining UL on the BR for various m_X hypotheses assuming X is scalar or vector.
- New UL: $\mathcal{B}(K^+ \to \mu_{\square}^+ \nu \nu \bar{\nu}) < 1.0 \times 10^{-6}$

Search for heavy neutral leptons (HNL)

Search for HNL decay in beam-dump mode:⁵

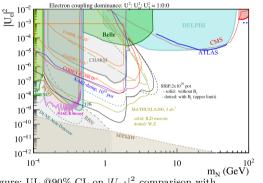


Figure: UL @90% CL on $|U_{e4}|^2$ comparison with beam-dump searches. Blue contour: projected NA62 sensitivity at 10^{18} POT.

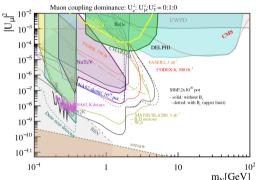


Figure: UL @90% CL on $|U_{\mu4}|^2$ comparison with beam-dump searches. Blue contour: projected NA62 sensitivity at 10^{18} POT

⁵Feebly-interacting particles: FIPs 2020 workshop report. Prateek Agrawal et al., Eur. Phys. J. C 81 (2021) 11, 1015, [2102.12143]

Model of DP A' with kinetic mixing with the SM hypercharge: $\mathcal{L} \supset -\frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B^{\mu\nu} \Rightarrow$

Two DP production mechanisms in the beam-dump setup (in TAX):

- Bremsstrahlung production: $p + N \rightarrow X + A'$
- meson-mediated production: $p + N \to X + M$, $M \to A' + \gamma(\pi^0)$, where $M \in \{\pi^0, \eta, \rho, \omega, ...\}$

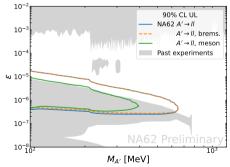


Figure: Sensitivity per production mechanism assuming 0 observed events in 1.4×10^{17} POT.

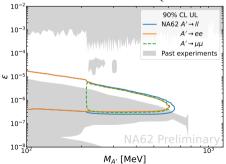


Figure: Sensitivity per decay mode assuming 0 observed events in 1.4×10^{17} POT

Search strategy:

- $\ell^+\ell^-$ vertex reconstructed in FV:
- primary production vertex close to TAX.

Event selection:

- good quality tracks with timing in coincidence with each other and the trigger
- particle ID with LKr and MUV3
- no in-time activity in LAV
- extrapolation of di-lepton momentum to TAX definition of signal region (SR) in terms of primary vertex location: CDA_{TAX} and z_{TAX}

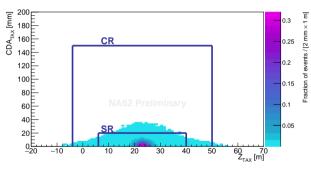


Figure: Signal MC and definition of control (CR) and signal regions (SR).

- SR: $6 < z_{\text{TAX}} < 40 \text{ m}$ and $\text{CDA}_{\text{TAX}} < 20 \text{ mm}$;
- both SR and CR kept blinded during the analysis

Search for $A' \to \mu^+ \mu^-$ decay - data and MC comparison, CRs opened:

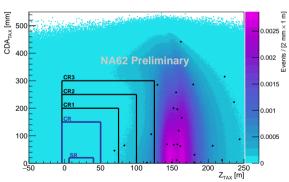


Figure: Data-MC comparison, CRs open, SR closed.

$N_{ m exp} \pm \delta N_{ m exp}$	$N_{ m obs}$	$p_{N \geq N_{ m obs}}$	$p_L \leq L_{\text{obs}}$
26.3 ± 3.4	28	0.41	0.74
1.70 ± 0.22	2	0.25	0.25
0.58 ± 0.07	1	0.44	0.44
0.29 ± 0.04	1	0.50	0.68
2.57 ± 0.33	4	0.26	0.24
0.17 ± 0.02	0	1.0	1.0
0.016 ± 0.002	-	-	-
	26.3 ± 3.4 1.70 ± 0.22 0.58 ± 0.07 0.29 ± 0.04 2.57 ± 0.33 0.17 ± 0.02	$\begin{array}{c cccc} 26.3 \pm 3.4 & 28 \\ 1.70 \pm 0.22 & 2 \\ 0.58 \pm 0.07 & 1 \\ 0.29 \pm 0.04 & 1 \\ 2.57 \pm 0.33 & 4 \\ 0.17 \pm 0.02 & 0 \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

• probability to observe 1 or more events in SR is 1.59%

Search for $A' \to \mu^+ \mu^-$ decay - data and MC comparison, CRs and SR opened:

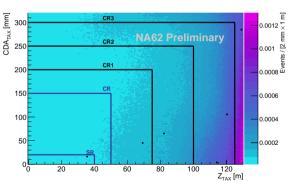


Figure: Data-MC comparison, CRs and SR open.

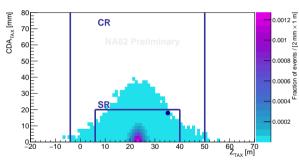


Figure: Signal MC - data: 1 event observed - counting experiment with 2.4σ significance. Signal shape not taken into account for the significance.

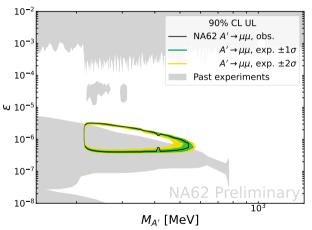


Figure: Final result with upper limit @90% CL.

Search for dark scalars (DS)

Scalar portal: $\mathcal{L} \supset (\mu S + \lambda S^2) H^{\dagger} H$

• minimal scenario: $\lambda = 0 \Rightarrow$ no pair production

Below EW scale:

- H is substituted by $(v+h)/\sqrt{2}$
- non-zero $\mu \Rightarrow S$ -h mixing: $\sin \theta \simeq \theta = \frac{\mu v}{m_h^2 m_S^2}$

At loop level, S production in FCNC transitions:

• $B \to KS, K \to \pi S \Rightarrow$ Search at NA62 for a bump above the $K^+ \to \pi^+ \nu \bar{\nu}$ spectrum (see talk by E. Goudzovski)

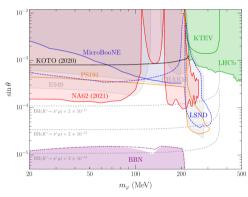


Figure: Excluded regions of $(\sin \theta, m_S)$ parameter space for S decaying only to visible SM particles. Red: exclusion from $K^+ \to \pi^+ + \text{inv.}$ and $\pi^0 \to \text{inv.}$ decays.³

⁶New Physics Searches at Kaon and Hyperon Factories. E. Goudzovski et al., [2201.07805]

Search for dark scalars (DS)

Probing higher m_S with the beam-dumps:

• search for charged 2-body decays $(S \rightarrow ee, \mu\mu, \pi\pi)$ can be performed at NA62 with 10^{18} POT statistics

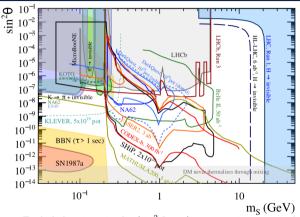


Figure: Excluded regions in the (sin² θ , m_S) parametric space, including beam-dump searches. Blue: projection for NA62 10¹⁸ POT $S \to \mu\mu$.⁵

⁵Feebly-interacting particles: FIPs 2020 workshop report. Prateek Agrawal et al., Eur.Phys.J.C 81 (2021) 11, 1015, [2102 12143]

Search for Axion-like particles (ALP)

Pseudoscalar (ALP) portals:

- gauge boson coupling: $\frac{C_{aX}}{\Lambda}aX_{\mu\nu}\tilde{X}^{\mu\nu}, X \in \{B, W, G\}$
- fermionic coupling: $\frac{C_{af}}{\Lambda} \partial_{\mu} a \bar{f} \gamma^{\mu} \gamma^{5} f, f \in \{q, \ell\}$

At loop level, FCNC decays for $C_{aq}, C_{aG}, C_{aW} \neq 0$:

- ALP production in $B \to K^{(\star)}a, K \to \pi a$
- At NA62 kaon mode: re-interpretation of $K^+ \to \pi^+ \nu \bar{\nu}$ decay (see talk by E. Goudzovski)

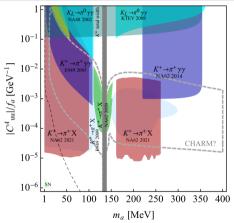
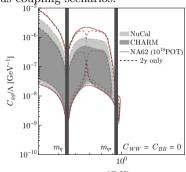


Figure: Bounds on flavor-diagonal pseudoscalar quark couplings: coupling of ALP to up quarks. 6

⁶New Physics Searches at Kaon and Hyperon Factories. E. Goudzovski et al., [2201.07805]


quark couplings. coupling of ALF to up quarks.

Search for Axion-like particles (ALP)

NA62 sensitivity in beam-dump mode (10^{18} POT) in various coupling scenarios:

Figure: NA62 Run2 sensitivity w.r.t. past exclusions from $a \to 2\gamma$ search for $g_{a\gamma} = C_{a\gamma}/\Lambda$ coupling scenario⁷.

 $m_a \, [{
m GeV}]$

Figure: NA62 Run2 sensitivity (compared to past proton BD) from $a \to \text{hadrons}$ and $a \to 2\gamma$ search for C_{aG} coupling-only⁸.

⁷Light in the beam dump – ALP production from decay photons in proton beam-dumps. B. Döbrich et al., *JHEP* 05 (2019) 213, [1904.02091]

⁸ALPINIST: Axion-Like Particles In Numerous Interactions Simulated and Tabulated. J.J., B. Döbrich et al., JHEP 07 (2022) 094, [2201.05170]

Conclusion

- NA62 is a multipurpose experiment: besides the main goal $(K_{\pi\nu\bar{\nu}})$, precision measurements, etc.), it covers a wide program of direct searches for NP particles in both kaon and beam-dump mode
- NA62 can probe new regions in Dark Sector mass-coupling parametric spaces many years before dedicated facilities are built data being collected right now:
 - · data-taking ongoing with many software and hardware updates and increased beam intensity

Conclusion

- NA62 is a **multipurpose experiment**: besides the main goal $(K_{\pi\nu\bar{\nu}})$, precision measurements, etc.), it covers a wide program of direct searches for NP particles in both kaon and beam-dump mode
- NA62 can probe new regions in Dark Sector mass-coupling parametric spaces many years before dedicated facilities are built data being collected right now:
 - data-taking ongoing with many software and hardware updates and increased beam intensity

Thank you for your attention!

Backup slides

Search for dark photons - backgrounds details

Combinatorial background:

- background from random superposition of two uncorrelated halo muons:
- selected single tracks in a data sample orthogonal to the one used for the analysis:
- track pairs are artificially built to emulate a random superposition;
- each track pair weighted to account for the 10 ns time window \rightarrow independent on the intensity:
- powerful statistical accuracy from combinatorial enhancement:

Prompt background:

- background from secondaries of muon interactions with the traversed material (hadron photo-production);
- muon kinematic distributions extracted from selected single muons in data (backwards MC);
- to correct the spread induced by the backward-forward process (straggling, MS), an unfolding technique is applied to better reproduce the data distributions:
- relative uncertainty of MC expectation $\sim 100\%$.

Prompt background negligible with respect to combinatorial (UL @90% CL is 30% of combinatorial)

Search for dark photons - backgrounds details

 ΔT of the tracks suggests two types of background mechanisms

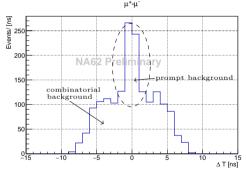


Figure: ΔT before LAV veto is applied (CR, SR blinded).

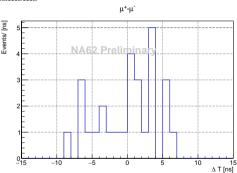
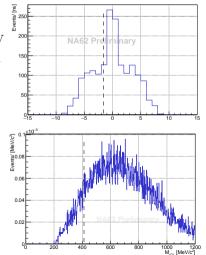


Figure: ΔT after full selection (CR, SR blinded).


Search for dark photons - details on observed event

- invariant mass: $m_{\mu\mu} = 411 \text{ MeV}$
- time difference: $\Delta T = -1.69 \text{ ns}$
- momenta:

•
$$P(\mu^+) = 99.5 \text{ GeV}/c$$

•
$$P(\mu^{-}) = 39.6 \text{ GeV}/c$$

- $z_{\rm EV} = 157.8 \, {\rm m}$
- $CDA_{FV} = 382 \text{ mm}$
- $z_{\rm TAX} = 17 \; \rm mm$
- $E/p(\mu^+) = 0.008$
- $E/p(\mu^{-}) = 0.018$

u+-u

NA62 Preliminar

Δ T [ns]

Search for HNL - selection details

- triggers used: $K_{\pi \nu \nu}$ for $K^+ \to e^+ N$ and control/400 (hit in CHOD) for $K^+ \to \mu^+ N$
- number of K^+ decays:
 - $N_K = (3.52 \pm 0.02) \times 10^{12} \text{ in } K^+ \to e^+ N \text{ case}^4$
 - $N_K = (1.14 \pm 0.02) \times 10^{10} \text{ in } K^+ \to \mu^+ N \text{ case}^5$
- event selection:
 - good quality track, decay vertex reconstructed as the point of closest distance of approach (CDA) of STRAW track with original K^+ track
 - particle ID based on E/p (LKr/STRAW), RICH pattern matching signal and associated hit in MUV3 (required for μ , veto for e)
 - additional veto conditions to suppress multibody K^+ decays

⁴Search for heavy neutral lepton production in K⁺ decays to positrons. NA62 Collaboration. Phys.Lett.B 807 (2020) 135599, [2005.09575]

⁵Search for K^+ decays to μ and invisible particles. NA62 Collaboration. Phys. Lett. B 816 (2021) 136259, $|2101.12304\rangle$