Measurement of Cosmic Ray spectra with DAMPE and future prospects with the HERD space mission

Francesca Alemanno*

on behalf of the DAMPE and HERD collaborations

Gran Sasso Science Institute (GSSI) & INFN-LNGS

*email: francesca.alemanno@gssi.it

Vulcano Workshop 2022

FRONTIER OBJECTS IN ASTROPHYSICS

AND PARTICLE PHYSICS

Study of CR spectra: motivations

Several measurements:

- spectral **hardening** at few hundreds GeV
- hints of a softening above ~10 TeV?
- Nearby sources?Acceleration mechanisms?Propagation effects?

Energy range:
5 GeV – 10 TeV e/γ
50 GeV – 300 TeV protons and nuclei

The DAMPE space mission

The DArk Matter Particle Explorer (DAMPE) is a satellite-based experiment

DAMPE was successfully launched on **December 17th 2015** from the Jiuquan Satellite Launch Center

The DAMPE collaboration involves several institutes in China and Europe

The main objectives of the DAMPE mission are:

- Study of galactic cosmic-ray physics
- Dark matter searches
- High-energy gamma-ray astronomy

Detector structure

J. Chang et al., Astrop. Phys. 95(2017)6-24

CR data collected

DAMPE collects ~5 million CR events per day

Identification of nuclei

Nuclei	Charge Resolution
P	0.13
He	0.12
Li	0.14
Be	0.21
В	0.17
С	0.18
N	0.21
O	0.21
Fe	0.32

Proton spectrum

PHYSICS

Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite

- Confirmation of a hardening structure at 480±10 GeV
- Detection of a **softening** at 13.6+4.1-4.8 TeV with significance of \sim 4.7 σ

Helium spectrum

- First detection of a softening at 34.4+6.7-9.8 TeV with significance of ~4.3σ
- Suggesting a charge dependent feature

p+He spectrum

- General agreement with DAMPE proton and helium independent analyses

 Evidence of the combined proton and helium softening at ∼25 TeV
- Extension to higher energy (300 TeV) and comparison with ground-based experiments

B/C & B/O

Preliminary DAMPE results in good agreement with other experiments
 Extension to ~5 TeV/n in progress

Summary – DAMPE

- The DArk Matter Particle Explorer, was launched in December 2015 and it is smoothly taking data since then
 - Direct detection of a **break** at ∼1 TeV in the **electrons and positrons** spectrum
 - Detection of a **softening** at \sim 14 TeV in the **proton** spectrum
 - First detection of a **softening** in the **helium** spectrum at ~34 TeV, suggesting a Z dependence
- Evidence of a combined proton and helium softening in the p+He spectrum at ~25 TeV
 - Comparison between **space-based** and **ground-based** experiments
 - Upcoming results on the B/C and B/O flux ratios
 - Ongoing works on both primaries (C, O, Fe, ...) and secondaries (Li, Be, B, ...)

The HERD space mission

The High Energy cosmic Radiation Detection facility

Main scientific objectives:

- Galactic CR studies
- Dark Matter search
- Gamma-ray astronomy

International collaboration between China, Italy, Switzerland and Spain

Planned to be installed onboard the China's Space Station

Expected lifetime ~10 years

Expected performance

	HERD	DAMPE	CALET
e/ y Energy res. @100 GeV (%)	<1	1.5	2
e/γ Angular res. @100 GeV (deg)	<0.1	0.1	0.2
e/p discrimination	>106	10 ⁵	10 ⁵
Calorimeter thickness (X ₀)	55	32	27
Geometrical acceptance (m²sr)	>3	0.29	0.12

One order of magnitude upgrade in exposure wrt current generation CR experiments (~15 m² sr yr)

Science with HERD

Galactic Cosmic Rays studies

Exploring the CR knee from space

Clarifying propagation mechanisms

Science with HERD

All-electron spectrum

- Searching for nearby e*-e* sources
- Possible detection of a spectral cutoff at high energy

Gamma-rays from 100 MeV

- Study of galactic and extragalactic sources + diffuse emission
- Extension of the Fermi-LAT **catalog** to higher energy (>300 GeV)
- Search for indirect dark matter signatures

The HERD detector

Accepting particles from the top **and** four lateral sides

- CALO: deep 3D calorimeter. Energy measurement + e/p separation
- FIT: Fiber Tracker. Particle tracker.
- PSD: Plastic Scintillator Detector. Charge measurement + trigger for gamma-rays and charged particles
- SCD: Silicon Charge Detector. Additional charge measurement
- TRD: Transition Radiation Detector, on one of the lateral faces. Energy calibration of nuclei in the TeV region

HERD test beam campaigns @CERN

Summary – HERD

- HERD is a space-based experiment to be installed on board China's Space Station, and will operate for ~10 years
 - HERD will give the possibility to reach the CR knee from space (~PeV), to search indirectly for dark matter signatures and to perform gamma-ray astronomy
- One order of magnitude upgrade in exposure wrt current generation CR experiments
 - The full HERD prototype was tested at CERN in Autumn 2021 and Summer 2022
- Ongoing work includes hardware R&D and MC simulations, for further optimization of the detectors and definition of the final design

Thank you for the attention!

Electron IDentification

Comparison of flight data and MC simulations of the ζ distributions Flight Data 300 **MC Electron** MC Proton 250 MC Electron+Proton **Number of Events** 200 $500 \text{ GeV} < E_{\text{dep}} < 1 \text{ TeV}$ 150 100 50 15 20 30 **Electrons** $\zeta = \mathcal{F}_{\mathrm{last}} imes (\Sigma_i RMS_i/\mathrm{mm})^4/(8 imes 10^6)$

All-electron spectrum

SLIDES TAKEN FROM ICRC 2021 – Shoji Torii and Yosui Akaike for CALET and Li Xiang for DAMPE

Particle selection and identification

Plots from F. Gargano @MG15 ROME 2018

Proton spectrum

---- Flight data

---- MC helium

— MC proton + helium

 $0.447 < E_{dep}/TeV < 0.562$

PSD charge

Contamination

Charge selection

Uncertainty

Proton spectrum

PHYSICAL REVIEW LETTERS 129, 101102 (2022)

Editors' Suggestion

September 1, 2022

Observation of Spectral Structures in the Flux of Cosmic-Ray Protons from 50 GeV to 60 TeV with the Calorimetric Electron Telescope on the International Space Station

Helium spectrum

INFN Study of light (p+He) CR component: motivations

Charge

Charge selection

Acceptance

Preliminary

 10^{4}

Uncertainty

Contamination

Effective a 20.0

0.02

0.0

10²

 10^{2}

10³

10⁵

10³ 10⁴ Incident energy (GeV)

Energy (GeV)

Item	Value	
Type of crystal	LYSO	
Nuclear interaction length	$3(55X_0)$	
Number of crystals	~7500	
Crystal dimension	$3 \times 3 \times 3 \text{ cm}^3$	

Scintillation light is readout independently by:

- 1) WLS fibers coupled to IsCMOS cameras
- 2) Photodiodes connected to custom front-end electronics

Partial readout of crystals with PhotoDiodes (Calocube) for calibration extended dynamic range & reduced systematics.

...from beam tests at CERN - SPS

L. Pacini et al, PoS, ICRC2021(2021) 066

6

Slides from D. Kyratzis @PISA meeting 2022

Slides from D. Kyratzis @PISA meeting 2022

HERD sub-detectors: Plastic Scintillator Detector (PSD)

The PSD will provide γ identification (vetoing charged particles) w/accurate measurement of impinging charged particles

Slides from D. Kyratzis @PISA meeting 2022

HERD sub-detectors: Silicon Charge Detector (SCD)

The SCD is a **silicon micro-strip** detector with the objective of precisely measuring the particle charge

Slides from D. Kyratzis @PISA meeting 2022