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Motivations

In a supernova explosion, GWs are generated in the inner core of the
source, so that this messenger carries direct information of the inner
mechanism.

Although the phenomenon is among of the most energetic in the
universe, the amplitude of the gravitational wave impinging on a
detector on the Earth is extremely faint.

For a CCSN in the center of the Milky way, a rare event, we could
expect amplitudes of the metric tensor perturbatlons ranging
between 10721 — 10723,

To increase the detection probability we should increase the volume
of the universe to be explored and this can be achieved both by
decreasing the detector noise and using better performing statistical
algorithms.
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* Thermonuclear Supernovae: Type Ia

» Caused by runaway thermonuclear burning of white dwarf fuel to Nickel
> Roughly of 10°! ergs released

» Very bright, used as standard candles

» No remnant

* Core Collapse Supernovae: Type 11, Ib, Ic
» Result from the collapse of an iron core in an evolved massive star (Mzaps >8-10 Mgyy)
> Few x 10°3 ergs released in gravitational collapse, most (99%) radiated in neutrinos
» Spread stellar evolution elemental products throughout galaxy
» Neutron star or black hole remnant



MeV Neutrinos fromgN1987A
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Massive Stars: Burning stages

Stars spend most of their lives
burning hydrogen.

The product — helium — settles in the
core and will burn when
temperatures increase sufficiently.

For massive stars (M > 8-10M_,), the
process continues through carbon,
oxygen, ..., up toiron.

Timescale

H burning 7 million years
He Burning | 0.5 million years
C Burning 600 years

Ne Burning | 1 year

O Burning 6 months

Si Burning | 1 day

This process does not continue past
iron as iron is one of the most tightly
bound nuclei.

Iron core builds up in center of star. _
' A. C. Phillips, The Physics of Stars, 2nd Edition (Wiley, 1999).



Massive Stars: End Stage

* Stars are, for the majority of the
time, in hydrostatic equilibrium
because the radiation pressure of
the photons from nuclear
reactions balance gravity.

* |ron cores however are supported
by electron degeneracy pressure,
much like a white dwarf, there is a
maximum mass that electron
degeneracy pressure can support.

imescale

H burning 7 million years
He Burning | 0.5 million years
C Burning 600 years

Ne Burning | 1 year

O Burning 6 months

Si Burning | 1 day

ﬁ A. C. Phillips, The Physics of Stars, 2nd Edition (Wiley, 1999).



Onion shell structure of pre-collapse star

Shells of progressively heavier elements H
contain the ashes of a sequence of

nuclear burning stages, which finally

build up a degenerate core of oxygen, He
neon and magnesium oOr iron-group
elements at the center.

Convective burning can lead to large
scale  velocity and  density
perturbations in the oxygen and
silicon layers (as indicated for the O-

shell). B# H.-Th Janka, arXiv:1702.08825 (layers not drawn to scale)

Fe




Dynamical phases of stellar

core collapse and explosion

" Gravitational instability
of stellar core

Shock
wave
Proto-neutron star

Explosion and nucleosynthesis

ZN)

ﬁ/'( /\“

-‘ Proto-neutron star

ﬁ H.-Th Janka, arXiv:1702.08825



Predictions of Signals from Supernovae

(magneto-)hydrodynamics of stellar plasma || relativistic gravity

(nuclear) EoS = neutrino physics

\/

SN explosion models

neutrinos nucleosynthesis

lightcurves,

spectra

gravitational waves

explosion asymmetries,




A NEW GRAVITATIONAL-WAVE SIGNATURE FROM

STANDING ACCRETION SHOCK INSTABILITIES IN
SUPERNOVAE
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F1G. 1.— In each set of panels, we plot, top; gravitational wave amplitude of plus mode A4 [cm]|, bottom; the characteristic wave strain

in frequency-time domain h in a logarithmic scale which is over plotted by the expected peak frequency F peak (black line denoted by “A™).
“B” indicates the low frequency component. The component “A” is originated from the PNS g-mode oscillation (Marek & Janka 2009;

Miiller et al.'2013). The component “B” is considered to be associated with the SASI activities (see Sec. [3)). Left and right panels are for
TM1 and SFHx, respectfively. We mention that SFHx (left) and TM1 (right) are softer and stiffer EoS models, respectively. 10

B T. Kuroda et al.,Astrophys.J. 829 (2016) no.1, L14



:softe | | Vi1 :stiffer
Tpb(ms)=-0.800114

7.5 10. 12. 15. 18. Tpb(ms)=8.59512

7.5 10. 12. 15. 18.

400km [Kuroda et al 2016, ApJL, 2014, PRD]‘IOOKrn

SASI activity higher for softer EOS



Different scenarios

Non rotating scenario Neutrino driven CCSNe

A g-mode at PNS surface
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Credit: Tomoya Takiwaki

Burrows ¢4\ 2007, W ApJ 664, 416\



Phenomenological

Waveforms




Phenomenological Wavetorms
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B Phys.Rev.D 103 (2021) 6, 063011
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ASD [10

parameter |min. max. A description

tini [5] 0 0.2 0.1 |beginning of the waveform
tend [S] 02 15 0.1 end of the waveform

vo [Hz] 50 150 50 frequency at bounce

v1 [Hz] 1000 2000 500 frequency at 1 s

vo [Hz| 1500 4500 1000 frequency at 1.5 s
Vdriver |Hz|[ 100 200 100 driver frequency

Q (1,5,10) quality factor

D [kpc] (1,2,5,10,15) distance to source

* New and flexible parametrisation for the
frequency evolution.

* The distance is used as a parameter.



Gravitational Wave Observatories
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Aim of our Convolutional Neural Network

* We want to perform signal detection as an
image recognition task, classifying the images
in two classes: Signal and Noise.

* The mput 1images are the RGB multi-detector
scalogrames.

* The aim 1s to build a pipeline for a data-driven
weakly-modelled robust search.

*Our RGB approach allows us to
straightforwardly exploit coincidences among
different detectors.



RGB time-frequency plane

Coincidences among detectors

Red Channel

Additive colour synthesis

Blue Channel

LIGO Hanford = red
LIGO Livingston = green
Virgo = blue

frequency [HZ]

S 17
W Phys.Rev. D 98 (2018) 12, 122002

post-'bounce time [s]



RGB time-frequency plane

Coincidences among detectors

Signal+Noise

RGB time-frequency plane
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Additive colour synthesis

LIGO Hanford =
LIGO Livingston =
Virgo = blue

red
green
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Architecture of the

deep learning
algorithm

Mini Inception Resnet vl: reduced version of
Inception-Resnet

Keras framework, based on the TensorFlow
backend

Total number of parameters: 98997
30 times more complex than previous network

The task is treated as a multi-class classification
problem with two classes: the event class and
the noise class, by using the binary cross
entropy.

The training and validation phase, performed in
the real detector noise, i1s done in 2 h and 21
min using a GPU Nvidia Quadro P5000, while
predicting the test set takes 3 ms for each 2 s
long image.

Input (256x64x3)

onv 7% =

Reduction-A

xInception-resnet-

Reduction-A
Inception-resnet-A

Reduction-A

2xInception-resnet-

Reduction-A

Inception-resnet-C

Reduction-A

Sigmoid

Output: 29x125x32

Output: 15x63x52

Output: 15x63x72

Output: 8x32x92

Output: 8x32x102

Output: 8x32x112

Output: 4x16x142

Output: 4x16x152

Output: 2x8x172

Output: 2x8x182




49  Data: from Gaussian noise to real noise

Gaussian noise Previous set: 10* images for each value of Network SNR € [8,40]

ﬁ Phys.Rev. D 98 (2018) 12, 122002

* Training set — phenomenological waveforms: 7 x 10* images
for each distance € [0.2, 3] kpc and random sky localisation.

Real t i i
eal detector noise * Blind set — phenomenological waveforms: 26 x 10 images

(02 — August 2017) with distances chosen in a uniform distribution € [0.2, 15] kpc.
NOT involved in the training or validation procedure.

 Test set - numerical simulations from the literature: 6.5 x
10* images with distances € [0.1, 15] kpc

In particular, we chose a stretch of real data even containing glitches, taken during August 2017,
when Virgo joined the run. The period includes about 15 days of coincidence time among the three
detectors and we used this data set to generate about 2 years of time-shifts data to train and test the
neural network as noise class.

B Phys.Rev.D 103 (2021) 6, 063011



) Measuring and constraining the learning

Frequency

©*: decision
threshold I

0 Probability

Credit: Melissa Lopez

The output of the network is a probability vector U,
which contains the probabilities of the template
belonging to one class or another.

The classification task is performed according to a
threshold 0*, the template will be classified as event
class only if its probability overcomes J*.

Confusion matrix

Actual class

Event Noise

; Foent True False
il positive (TP) | positive (FP)

L : False True

Noise
negative (FN) [negative (TN)
Efficiency:

correctly classified signals TP
7 NN — = —_—
ICNN = 3l the signals at CNN input TP+ FN

False Alarm Rate:
misclassified noise FP
HrERon = all classified events FP +TP
False Positive Rate: FPR = _ B
) T FP+TN



Comparison with previous work in Gaussian noise

Weighted binary cross- 100 1
entropy:

: 95 |
w=1[ correctly classify the
noise class or the event class is _
the same £ g
w=2 1t 1S 2 times more o
important to correctly classify
the noise class rather than the
event class. 80 1

s,

Phys.Rev. D 98 (2018) 12, 122002
Phys.Rev. D 103 (2021) 6, 063011
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% Validation process in real detector noise

100 1
90 - -25
80 - - 20
= S
e W9 -15 =
=2 2
= Q
S 60 - <
10 &
50 -
-5
40 -
30 L LR D | T v T T LRI Da e T T T Y Y i e L A T ' | PR _O
1 2 4 8 16 32 64 128 256
SNR

noenn (solid lines) and FARcy v (dashed lines)
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"% Results in real detector noise
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VIRG

correctly classified signals

all the signals at the input of CNN

TICNN
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B Phys.Rev.D 103 (2021) 6, 063011




+?  Results in real detector noise
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SNR




Conclusions

* We trained a newly developed Mini-Inception Resnet
neural network  using  time-frequency = 1mages
corresponding to Injections of simulated
phenomenological signals, which mimic the waveforms
obtained 1n 3D numerical simulations of CCSNe.

* In the case of O2 run, 1t would have been possible to detect
signals emitted at 1 kpc of distance, whilst lowering down
the efficiency to 60%, the event distance reaches values up
to 15 kpc.

* These results are very promising for future detections and
the algorithm has multiple possible extensions.
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