Cosmic Ray Observations at Ultra-High Energies

Michael Únger

Karlsruhe Institute of Technology

Vulcano Workshop 2022 - Frontier Objects in Astrophysics and Particle Physics

2/20

Detection of UHECRs: Air Showers

fluorescence telescope

particle detector

Telescope Array Minchie 35 40 kiv

UHECR Observatories

Pierre Auger Observatory

Telescope Array

UHECR Observatories

Pierre Auger Observatory

Air Shower Detection in the Hybrid Era

Air Shower Detection in the Hybrid Era

Energy Spectrum

Propagation of UHECRs in Photon Fields

Energy Spectrum

Measurement of Local CR Energy Density

$$b = 4\pi/c \int_{E_{\text{ankle}}}^{\infty} E \operatorname{Flux}(E) dE$$

= $(5.66 \pm 0.03 \pm 1.40) \times 10^{53} \operatorname{erg Mpc}^{-3}$

 \rightarrow source luminosity density

$$\mathcal{L} \sim \rho/t_{\rm loss} = 2 \times 10^{44} \ {\rm erg \ Mpc^{-3} \ yr^{-1}}$$

Typical energy loss time $t_{\rm loss} \sim 1~{\rm Gpc/c}$ at $E_{\rm ankle} = 5 \times 10^{18}$ eV Full calculation with SimProp gives $\mathcal{L} = 6 \times 10^{44}$ erg Mpc⁻³ yr⁻¹)

Energy Spectrum

Measurement of Local CR Energy Density

$$\rho = 4\pi/c \int_{E_{\text{ankle}}}^{\infty} E \operatorname{Flux}(E) dE$$

= (5.66 ± 0.03 ± 1.40)×10⁵³ erg Mpc⁻³

 \rightarrow source luminosity density

$$\mathcal{L} \sim \rho/t_{\rm loss} = 2 \times 10^{44} \text{ erg Mpc}^{-3} \text{ yr}^{-1}$$

Typical energy loss time $t_{\rm loss} \sim 1~{\rm Gpc/c}$ at $E_{\rm ankle} = 5 \times 10^{18}$ eV Full calculation with SimProp gives $\mathcal{L} = 6 \times 10^{44}$ erg Mpc⁻³ yr⁻¹)

Pierre Auger Coll., ICRC19, PRD 2020, PRL 2020, EPJC 202' Physics See Viewpoint: The Anatomy of Ultrahigh-Energy Cosmic Rays

Energy Spectrum – Interpretation of Spectral Features

Energy Spectrum – Interpretation of Spectral Features

Longitudinal Shower Development (Fluorescence Telescopes)

Maximum Rigidity Model, Peters Cycle?

energy spectrum at source $\propto (E/Z)^{-\gamma}$

Towards Charged Particle Astronomy

UHECR Sky as seen by the Pierre Auger Observatory

code and dataset available at doi:10.5281/zenodo.6504276

post-trial p-value is 3%

Pierre Auger Coll., ApJ 2022

Correlation with Galaxy Catalogues (E \gtrsim 40 EeV)

Correlation with Galaxy Catalogues ($E \gtrsim 40 \text{ EeV}$)

Observation of a Dipolar Anisotropy of UHECRs (E > 8 EeV)

17/20

Observation of a Dipolar Anisotropy of UHECRs (E > 8 EeV)

amplitude: 7.3 \pm 0.1%, significance: 6.6 σ

Summary

Golden Age of UHECR Research

- high-precision flux measurement
- unexpected mass composition
- large-scale anisotropy at $>5\,\sigma$
- indication of intermediate-scale anisotropy
- maximum energy of source discovered?
- + ν and γ limits constrain UHECR sources
- mass-dependent anisotropy
- hadronic interactions at UHE
- search for LIV, SHDM at UHE
- transient follow-ups (GWs, TXS 0506+056,...)

Next Up: Charge Sensitivity and Full-Sky Equal Exposure

Under Construction: AugerPrime

- composition/protons at UHE?
- charged-particle astronomy?
- E_{max} or GZK?
- muon-puzzle at UHE

Under Construction: TAx4

Future Zevatron Hunters

POEMMA PRD 101 (2020) 023012

GCOS PoS(ICRC2021)027

UHECR Snowmass white paper arXiv:2205.05845

fluorescence detection from space?

large hybrid ground array?

200 km

backup slides

AugerPrime Deployment Status 09/2022

- WCD sending T2
- with SSD
- pre-production array
- with UUB

Photon Limits

Comparison of TA and Auger Energy Spectra

Figure 1: Left: Auger and TA energy spectra in the full fields of view $(-90^{\circ} < \delta < +24.8^{\circ} \text{ and } -15.7^{\circ} < \delta < +90^{\circ}$, respectively). Right: energy-rescaled spectra by the same amount (±4.5%) and in opposite directions.

Comparison of TA and Auger Energy Spectra

Figure 2: Left: Auger and TA spectra in the common declination band $(-15.7^{\circ} < \delta < 24.8^{\circ})$ with a constant shift $\pm 4.5\%$, Right: with an energy-dependent shift $\pm 10\% \times \log_{10}(E/10^{19} \text{ eV})$ for $E > 10^{19} \text{ eV}$.