

Use of Inorganic Mass Spectrometry for the screening of radio-pure material

S. Nisi

Laboratori Nazionali del Gran Sasso

Servizio di Chimica Impianti Chimici

stefano.nisi@Ings.infn.it

SoUP 2022

Outline

- Gran Sasso National Laboratory (LNGS)
- The relevance of background
- Ultra-low level radioactivity measurement facilities at LNGS: Gamma ray & ICP-MS
- What is mass spectrometry?
- ICP-MS potentiality and limiting factor
- Applications

Gran Sasso National Laboratory

3

The LNGS underground laboratory provides the necessary **ultra-<u>low</u>** <u>radioactive background</u> _to detect extremely rare events Cosmic ray flux reduction: ≈10⁶ Neutron flux reduction: ≈10³

- Selection of highly radio-pure materials

Neutron Activation Analysis, γ-Ray Spectrometry, ICP-Mass Spectrometry

Ultra-low level radioactivity measurement facilities

STELLA (SubTErranean Low Level Assay)

- Y-ray spectrometry with high purity Ge detectors (HPGE)
- α spectrometry with Silicon PIPS detectors
- Liquid scintillation counters

Neutron Activation Analysis (NAA) Pavia

- TRIGA Mark II reactor Pavia University
- Radio-Chemical Lab
- HPGE at Milan INFN&University

ICP-Mass Spectrometry

- Quadrupole and double focusing ICPMS
- ISO 6 Clean room
- Reagent purification systems
- Sample treatment device

Radiometric techniques are sensitive to the radiation emitted by radionuclide decay

Sensitivity $f(T_{1/2}, Energy \Upsilon$ -ray line, branching ratio, sample mass, time of measurement)

ULL-GRS Ultra Low Level Gamma Ray Spectrometry

- + Sample treatment free
- + Non destructive technique
- Sensitivity depend on the sample mass (Kg)
- Long measurement time is requested to achieve high sensitivity (weeks)
- Bulk measurement/homogeneous material

Mass spectrometry measures the concentration of radionuclides (number nuclides/mass)

- + Small sample (g)
- + Relatively quick measurement
- Sample treatment is mandatory and delicate
- Destructive technique

R&MS are often applied both to check secular equilibrium of decay chain

Look inside the decay chains

Look inside the decay chains

ICP-MS

γ-ray Spectrometry

Others natural decay chains

What is the mass spectrometry?

- Identification and quantification of molecules and elements

Mass Spectrometry History

Plate 1. F. W. Aston with second mass spectrograph.

Ion source = discharge tube Mass analizer =magnet Detector = Fluorescent screen

Operating principle of magnet sector

Plasma Source Mass Spectrometry: historical milestone

Inductively Coupled Plasma Mass Spectrometry

High energy!

- Complete (almost):
- Desolvation
- Atomization
- Ionization

INFN

Quadrupole Theory

Consists of four Hyperbolic rod supplied with DC current and radio frequency

For a given combination of RF and DC voltages, the quadrupole only lets ions of a **specific mass** pass through to the detector. (In fact, mass spectrometer works on mass/charge ratio, not mass)

Issues in ICP MS ultra-trace analysis

- Isobaric interferences: polyatomic species, isotopes of different elements and double charged ions

- Sensitivity, especially for solid samples (the instrument does not tolerate high matrix content, dilution is necessary) and matrix effect

- Background (instrumental due to cross contamination and reagent, vials ...)

- High **risk of contamination** during sample preparation and measurement (we are looking for very very low concentrations!!!)

ICPMS Ultra Trace measurement "triangle"

Instrumentation

Sample preparation

"Clean chemistry"

21/06/2022

Two ICP mass spectrometers @ LNGS

ICP QMS (quadrupole mass

The polyatomic species interfering with the analytes are removed in the collision cell

Double focusing ICP Mass Spectrometer

Reverse Nier-Johnson geometry

The peculiarity of double focusing ICPMS are sensitivity and the mass resolution

Sample

introduction

R

Spray

chamber

(EM)

21/06/2022

Electrostatic Sector

- No Mass Dispersion
- Slit at particular radius r, the system acts as an energy filter.

Mass resolution power

When two adjacent peaks m_a and m_b with comparable intensitiy and **h<10%H** the resolution is defined as the ratio:

 $R=m/(m_a-m_b)$

21/06/2022

22

Low-Medium-High Resolution: peak shape

- Using the Low Resolution mode, the sensitivity is the highest and the top of the peaks are flat. This is a successful approach for many isotopic systems also
- In higher resolution the peaks have triangular shape, the resolution rise up, but the sensitivity degrease

	2x10 ⁶ cps/ppb	2x10⁵ cps/ppb	5x104 cps/ppb
ow resolution and now additionally for R = 2000		Medium resolution	High resolution

Measurement of K in Nal crystal

DM Direct detection experiments sensitivity = f(radioactivity background)

Some experiments looking for DM evidence are using or developing Nal crystal-based detectors

K is the most critical natural radio contaminant for Na due to their chemical affinity

The K final background budget is 10 ppb

The development of a high sensitivity analytical method is required in order to have a quick and reliable tool for Nal crystal production process monitoring (Detection Limit=ppb level).

Drawbacks in ICP-MS ³⁹K measurement

Crystal sampling procedure

Study of the impurity distribution

Sample	0 NOSE	1	2	3	4	5 TAIL	5B
K ppb	230	320	360	340	350	1415	
К ррb	<15	<15	<15	<15	<15	120	360
Th ppt	<1	<1	<1	<1	<2	<1	280
U ppt	<1	<1	<1	<1	<1	<2	130
К ррb	10.2	11.5	11.2	11.6	11.6	13.3	

Cry **ST Powder** Hot plasma

Cry N1 **UP Powder** Hot plasma

Cry N2 **UP Powder** Cool plasma

The uncertainty of the reported concentration values is about 10-25 %

HR-ICP-MS performance

Detection limit calculated with 3*SD_{BLK6} for Nal solid=3ppb

Pagayany toot		B5	B5+13.25	Mesured	Recovery %
Recovery lest	ppb	13.3 ± 2.5	26.5 ± 3	28 ± 5	105 ± 25

Techniques and labs comparison

Technique	Laboratory	DL [ppb]
HR-ICP-MS	LNGS	3
ICP-QMS	SICCAS	10
ICP-OES	Ametek R&D	5
ICP-QQQ-MS	PNNL	0.6

Without matrix separation, the DLs achieved in different labs using different instrumentation are at ppb level

Development of an analytical procedure for the improvement of ICP MS detection limits for Th and U in copper

Extraction chromathography

Advantages:

- Matrix removal
- Analyte pre-concentration

Disadvantages:

- Time consuming
- Reagents
- Risk of contamination
- Higher amount of sample

octylphenyl-N,N-di-isobutyl carbamoylphosphine oxide (CMPO)

TRU column specifics				
CMPO/TBP (ρ= 0.37 g/mL)				
100-150 μm				

Experimental

- Work in clean room (class 1000-ISO6)

-Preliminary cleaning of all vials and labware involved in the analysis (10% UP HNO3 solutions + rinsing with MilliQ - 18.2 $M\Omega^*$ cm – water)

- Dissolution in UP HNO_3 solution

- Several controlled etching steps: removal of likely contaminated surface and bulk analysis / depth profile

- Analytes separation and pre-concentration using extraction chromatographic columns loaded with selective resins

TRU results

Sample solution: 10% Cu in 4M HNO3

Th and U chromatographic extraction:

1.Resin pre-wash and conditioning (0.1M ammonium oxalate)

- 2. Rinse (4M HNO3, 5 mL)
- 3. Sample load (10 mL)
- 4. Rinse (4M HNO3, 5 mL)

5. Th and U elution (0.1M ammonium oxalate 10 mL)

Solution 5 analyzed undiluted

Total Dilution Factor: ≈10

(vs ≈1500 without pre-concentration)

DL* (in solid Cu)		Recovery %	
Th	2.6 ppt	90.0 ± 0.6	
U	0.8 ppt	97.9 ± 6.1	

*DL = 3 × BLKStdDev

Cu separation efficiency: >99%					
Measured in Cu sample					
Th	Th 4.6 ± 1.3				
U	1.0 ± 0.3				
DL Recovery %					
Th	very good	excellent			

LRT performance comparison

		ICPMS LNGS (LSC)	ULL GRS LNGS (LSC)	ULLGS+NAA LENA-Pavia
		Primordial parents	Y emettitors	Primordial parents
		Surface/bulk	BulK	Surface/bulk
Destructive		Yes	No	Yes
DL	[10 ⁻¹² g/g]	Th=0.5 U=0.5	Th= 10-20 U= 10-20	Th(²³³ Pa)= 0.1 U(²³⁹ Np)= 3-5
Sample size	[g]	0.1-10	1-10000	100
Sample treatment		Contamination risk not negligeble	Almost free	Hot sample handling Low cont risk
Analysis Time		days	weeks	days-week

R&MS are often applied both to check secolar equilibrium of decay chain ICP-MS allows to perform the quality control of each single part (or lot)

Final remarks

- The next generation of experiments focuses to detect rare low-energy events needs «zero background» conditions in fact the residual radioactive background rate drives the feasibility of the experiments in terms of detector mass (cost) and length of data taking period.
- ICP mass spectrometry is an extremely versatile technique: it is a very powerful tool also for the screening of radiopure materials and whenever high chemical purity is important (eg. Crystal growth, 3D powder ect)
- The sample treatment plays a fundamental role in order to achieve excellent sensitivity
- Thanks to its rapidity of analysis and the use of a minimum amount of sample, it is a technique suitable for quality control (even on a single lot)
- ICPMS allows to discriminate the contamination contributes for inhomogeneous material (for example PCB trace/support/components)
- The combination of γ-ray and ICP-MS analyses allows to determine the background with the best sensitivity and to check for secular equilibrium over the lifetime of the experiment.