

SCHOOL OF ADVANCED STUDIES Scuola Universitaria Superiore

S

G

S

GRAN SASSO SCIENCE INSTITUTE

Material screening for rare event search

Stefano Nisi Lorenzo Pagnanini

Barran Contractor States and and

Rare event experiments aim to discover new phenomena, producing **O(10) events** in **O(10 yr)** of data taking.

Since very low cross sections are involved (neutrino / dark matter), or a very long half-life (neutrinoless double beta decay), we need **tonne-scale detectors**.

Moreover, such detectors demand for massive shieldings against external background:

Y-radiation => Lead + Copper
neutrons => Polyethylene (Borated) / Water Tank
muons => Active Veto (e.g. Plastic Scintillators)

Detector + Shieldings = huge amount of different materials (active or passive)

What's happen if do not select those materias?

Commercial crystal

Data stream of a **1 cm³** lead tungstate (PbWO₄) cryogenic calorimeter!!

Crystal from selected materials

Data stream of a **100 cm³ selected** lead tungstate (PbWO₄) cryogenic calorimeter!!

The materials are extracted from ores which also contain unstable isotopes (of uranium, thorium and potassium).

The closer the material is, the cleaner it must be...not only due to the solid angle!

Materials **near** the detector produce α , β , and γ background. Materials far from the detector produce "only" γ background.

To characterize the contamination in a sample there are, at least, two ways

Concentration measurement

Atom counting

Activity measurement

$$A(t) = A_0 e^{-t/T} = N_0/T e^{-t/T}$$

Decay counting

The choice between the two are directly connected with:

- 1. the decay constant (mean life) of the isotope
- 2. the sensitivity of the instrumentation
- 3. the measurement time

The characterization of materials is connected with the **specific activity** measurement

 $A_s = A/Mass$ $[A_s] \equiv [Bq/kg]$

Concentration vs Activity

Relation between **Bq/kg** and **g/g** for a selected isotope

Natural isotopes	Anthropogenic isotopes
²³² Th 1 Bq/kg \equiv 2.4 10 ⁻⁷ g/g = 240 ppb	60 Co 1 Bq/kg \equiv 2.4 10 ⁻¹⁷ g/g 137 Cs1 Bq/kg \equiv 3.1 10 ⁻¹⁶ g/g
238 U 1 Bq/kg = 8.3 10 ⁻⁸ g/g = 83 ppb	²³⁹ Pu 1 Bq/kg \equiv 4.4 10 ⁻¹³ g/g
40 K 1 Bq/kg = 3.9 10 ⁻⁹ g/g	

Uranium and thorium decay chains

Concentration

Uranium and thorium decay chains

Activity

Rn-220

55.6s

Po-216

 $145\,\mathrm{ms}$

Pb-212

10.64h

Bi-212

60.55 min

Pb-208

a.i. = 52.4%

- 43.6%

BR - 64.06%

β 2.252 - 55.4%

1.525 - 4.5%

0.631 - 1.9%

0.739 - 1.4%

1620.5 - 1.5%

785.4 - 1.1%

 $\alpha = 8.785 - 100\%$

γ 727.3 - 6.7%

Po-212

 $299\,\mathrm{ns}$

²³²Th chain

Thorium

Radium

Radon220 86 Rn (Thoron)

84 Po Polonium

²¹² **Pb** 82 **Pb** 10.6hour ²¹²83**Bi**

²⁰⁸ **T**

α

Thallium

208 **Pb** 82 **Pb** Stable

Radium can be drained away, being an alkaline-earth metal that reacts easily with water.

Polonium

Secular Equilibrium: constant activity along the chain

Current sensitivity of different techniques

method	suited for s	ensitivity for U/Th
Ge-spectroscopy*	γ emitting nuclides	10-100 μBq/kg
Rn emanation assay	²²⁶ Ra, ²²⁸ Th	0.1-10 µBq/kg
Neutron activation	primordial parents	0. 01 µBq/kg
Liquid scintillation counting	α,β emitting nuclides	s 1 mBq/kg
Mass spectrometry (ICP-MS; A-MS)	primordial parents	0.01 µBq/kg
Alpha spectroscopy	²¹⁰ Po, α emitting nucl	lides 0.1 µBq/cm ²

* needs counting time of several weeks to month

only Ge-spectroscopy with its high energy resolution is able to control equilibrium breaking

see e.g.: Borexino Collaboration, Arpesella, C. et al., Measurements of extremely low radioactivity levels in Borexino, Astrop. Phys. 18 (2002) 1-25

Some specific considerations

We will focalize our attention on two very powerful analytical methods

Concentration

Activity

HR ICP-MS	Neutron Activation	Gamma Spectroscopy	Alpha Spectroscopy
- Liquids/dissolved Solids	- Solids and Liquids	- Solids and Liquids	 Suitable only surface analysis
 Sensitivity to primordial isotopes 	 Sensitivity to primordial isotopes 	 Sensible to gamma emitters 	 Sensitivity to whole radioactive chains
 Small amount of material (< 1 g) 	 Moderate amount of material (tens of g) 	 Few kilograms of material 	 Small amount of material, < 1 g
 Short running time (days) 	 Medium running time, few weeks 	 Long running time measurement many weeks/months 	 Long running time, months
 Techniques under fast evolution 	 Technique under development for low level contaminations 	 Well established technique 	 Techniques with some specific applications
			13

Gamma Ray Spectroscopy

The emission of gamma rays from nuclei is normally associated with an α or β decays and it is due to the nuclear level structure.

Since the emission is normally **immediate** (on the scale of psec), detection of gamma rays can be directly connected with the previous decay.

Gamma rays features:

- Well defined energy
- Characteristic of the decay
- Sometime cascades are present
- Ratio respect to decay (BR) is well established

Specific activity determination

To determine the specific activity for an unknown source with gamma ray spectroscopy

$$A_{Sp}\left[\frac{Bq}{kg}\right] = \frac{Counts_{source} - Counts_{Background}}{M_S t_{meas} BR \epsilon}$$

- $\begin{array}{l} \textbf{Counts}_{source} \text{ are the total counts collected during the measurement with the source} \\ \textbf{Counts}_{Background} \text{ are the total counts collected during the background measurement} \end{array}$
- M_s is the mass of the sample
- **t**_{meas} is the total live time of the measurement (i.e. real_time dead_time)
- **BR** is the branching ratio of the decay
- $\boldsymbol{\varepsilon}$ is the efficiency of the measurement apparatus (Monte Carlo)

Specific activity determination

There are some correlation between parameters:

•
$$M_{s}\uparrow$$
 => $\epsilon\downarrow$
• $t_{meas}\uparrow$ => Counts_{Background}\uparrow

We can conclude that it is mandatory:

• reduce the radioactive background

- selecting radio-pure detector compounds
- shielding the detector (the mountains are also worth it)
- vetoing muons if aboveground
- maximize of the product M_s ε
 - optimizing also <u>sample shape</u> and <u>position</u>
 - exploiting Monte Carlo simulations and experience

The first important issue to be addressed is the background reduction

High purity Germanium Detectors

The long story short:

- **p-n junction operated as diode** (reverse bias) with a uniform electric field (High Voltage)
- a photon interacting in the depletion zone produces a current proportional to the energy
- due to the small E_{gap} = 0.7 eV the thermal excitations produce a leakage current (Id)
- we have to operate the detector nitrogen temperature (77 K)

$$I_{\rm d}(T) \propto T^2 \exp\left[-\frac{E_{\rm gap}}{2\,k_{\rm B}\,T}\right] \quad \Rightarrow \quad \frac{I_{\rm d}(T_2)}{I_{\rm d}(T_1)} = \left(\frac{T_2}{T_1}\right)^2 \exp\left[-\frac{E_{\rm gap}}{2\,k_{\rm B}}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right]$$

High purity Germanium Detectors

Pros:

- large active volume (hundreds cm³)
- very high energy resolution (2 keV at 1332 keV)
- fast signals
- intrinsic radiopurity
- pulse shape discrimination

Cons:

- low detection efficiency
- quite expensive

Background sources in HPGe measurements

1. Environmental radioactivity

- 2. Contaminants in detector and shield material:
 - a. primordial, anthropogenic, cosmogenic
- 3. Radon and its progenies
- 4. Cosmic rays secondaries:
 - a. muons
 - b. neutrons
- 5. Neutrons from natural fission and (α, n) reactions

1.9	concent	tration [Bq/kg]
rock	238U	²³² Th	⁴⁰ K
granite	60	80	1000
limestone	30	7	90

1. Environmental background

1. Environmental background

All possible radioactive materials must be avoided or shielded Front end electronics must be put "far away" to Ge crystal

Location	Purity Issue	Exposure	Activation Rate	Equiv. Achieved Assay	Reference
Germanium	⁶⁸ Ge, ⁶⁰ Co	100 d	$1 \operatorname{atom/kg/day}$		[Avi92]
		Component Mass	Target Purity		
Inner Mount	²⁰⁸ Tl in Cu ²¹⁴ Bi in Cu	2 kg	$0.3 \mu Bq/kg$ $1.0 \mu Bq/kg$	0.7-1.3 μBq/kg	Current work also [Arp02]
Cryostat	²¹⁰ Tl in Cu ²¹⁴ Bi in Cu	38 kg	$0.1 \ \mu Bq/kg$ $0.3 \ \mu Bq/kg$	0.7-1.3 μ B q/kg	Current work also [Arp02]
Cu Shield	²⁰⁸ Tl in Cu ²¹⁴ Bi in Cu	310 kg	0.1 μBq/kg 0.3 μBq/kg	0.7-1.3 μBq/kg	Current work also [Arp02]
Small Parts	²⁰⁸ Tl in Cu ²¹⁴ Bi in Cu	1 g/crystal	80 µBq/kg	1000 $\mu \mathrm{Bq/kg}$	

ICP MS

Very pure copper is normally used to built many cryostat and shielding parts (e.g. end cap)

We have to "protect" our detector from the radioactivity component present in the environment of the laboratory

To reduce the gamma ray flux on the detector that comes from the environment a lead shield is installed

Why we use lead?

material		activity [µBq/kg]				
	²²⁶ Ra (U)	²²⁸ Th (Th)	⁴⁰ K	various		
lead	$\leq 29^{a}$	$\leq 22^{a}$	270 ^{a)}	\leq 4 E3 ²¹⁰ Pb ^{b)}	28.5 cm	
copper	$\leq 16^{a)}$	$9^{c)} \le 19^{a)}$	$\leq 88^{a}$	$\leq 10^{60} \text{Co}^{a}$	40.9 cm	
steel	130 ^{a)}	$\leq 40^{a}$	50 ^{a)}	140 ⁶⁰ Co ^{a)}	46.2 cm	
water	$\leq 1^*$	$0.04^{d} 0.008^{e}$	$\leq 2^{(d)}$		324 cm	
liq. sc. (PC)	10 ^{-6 f)}	$\leq 10^{-6}$ f)	$\leq 0.001^{\text{ f}}$		373 cm	
liq. nitrogen	≤ 0.3*		10 ⁻³ ³⁹ A	r ^{g)} 0.04 ⁸⁵ Kr ^{g)}	443 cm	
liq. argon	600*			10 ^{6 39} Ar ^{h)}	276 cm	
liq. xenon	5			1 ⁸⁵ Kr ⁱ⁾	120 cm	

Typical material for HPGe Detectors shielding

^{a)} GeMPI; ^{b)} bolometric Milano; ^{c)} Ge PNNL; ^{d)} ²³²Th by ICP-MS Ispra; ^{e)} ²³²Th by NAA TU München; ^{f)} ²²⁶Ra + ²²⁸Th by Bi-Po Borexino; * ²²²Rn MPI-K; ^{g)} Rare Gas MS MPI-K ^{h)} PC Bern, WARP; ⁱ⁾ XMASS

The ultimate background in HPGe is due to bremsstrahlung produced from the electrons emitted in the ²¹⁰Bi decay. **Archaeological Lead is a possible solution.**

lead sample	weight	time	specific activity [µBq/kg]			g]		
	[kg]	[d]	²²⁶ Ra	²²⁸ Th	⁴⁰ K	²⁰⁷ Bi	²¹⁰ Pb	
DowRun	144.6	101.7	< 29	< 22	440 ± 140	98 ± 24	$(2.7 \pm 0.4) \ge 10^7$	
Boliden	144.3	75.0	< 46	< 31	460±170	< 13	$(2.3 \pm 0.4) \ge 10^7$	
roman	22.1	37.2	< 45	< 72	< 270	< 19	< 1.3 x 10 ⁶	
	bolometri	c measur	ement: Alle	ment: Allesandrello et al. NIM B142 (1998) 163 $< 4 \times 10^3$				

3. Radon and its progenies

Radon, as noble gas, emanates from materials containing U and Th. In particular ²²²Rn with an half-time of 3.8 days can diffuse far away. It can flow close to HPGe detector entering inside the shield.

To avoid radon close to detector it is possible:

- flux the internal part of the shield with N
- pump the internal part of the shield
- hermetically close the shield (and wait)

G Heusser MPI Munich

4. Cosmic rays secondaries

Copper shield of HPGe crystal can produce some background due to cosmic rays activation

Cosmogenic activation produce larger activity in copper respect to primordials

(2009) 750-754	vity) [µBq/kg]	production rate (saturation activity) [µBq/kg]			radionuclide
Cobrign at al	estimated*4	unexposed	exposed		cosmogenic
Astrop. Phys.3	557		230 ± 30	77.31 d	⁵⁶ Co
(2010) 316-32	2147		1800 ± 400	271.83 d	57Co
	3878	4	1650 ± 90	70.86 d	⁵⁸ Co
	2367	< 10	2100 ± 190	5.27 y	⁶⁰ Co
	791		828 ± 82	312.15 d	⁵⁴ Mn
	157	3	118 ± 32	44.5 d	⁵⁹ Fe
	93		53 ± 18	83.79 d	⁴⁶ Sc
		12	110 ± 40	15.97 d	⁴⁸ V
					primordial
		< 16	< 35	1600 y	²²⁶ Ra (U)
		< 19	< 20	1.91 y	²²⁸ Th (Th)
		< 110	< 120	1.277×10 ⁹ y	40K

4. Cosmic rays secondaries

At sea level, the **charged component of cosmic rays** give a strong contribution to background This also produces **neutrons** in interaction with the lead shield Neutron interaction will produce **activation** of the spectrometer

At LNGS, muons are reduced by 6 orders of magnitude thanks to 3600 mwe of rock.

4. Cosmic rays secondaries

Observation of HPGe spectrum give us also the indication of neutron activated isotopes

5. Neutron production by (α, n) reaction

Neutron flux on detector can be produced also by natural radioactivity

TABLE 9 Uranium and thorium concentrations for various types of rocks, along with estimates on neutron production from such sources. Granite types A, B, and C are from rock samples taken in Karkonosze, Poland. Salt types I and II are from Wieliczka Salt Mine, Poland. Tabulation from Reference (144) with permission

	U (ppm)	Th (ppm)	$\mathrm{U}(\alpha,n)$	$Th(\alpha, n)$	Fission	
Type of rock	Concentration (ppm)		((neutrons/g/y)		
Granite	5	11	7.85	7.755	2.33	17.9
Limestone	1	1	0.64	0.285	0.467	1.4
Sandstone	1	1	0.837	0.38	0.467	1.7
Granite A	1.32	7.79	2.24	5.92	0.62	8.8
Granite B	6.25	4.59	10.62	3.49	2.92	17.0
Granite C	1.83	4.38	3.11	3.33	0.85	7.3
Salt I	0.30	2.06	1.60	4.77	0.14	6.5
Salt II	0.13	1.80	4.17	0.69	0.06	4.9

J. A. Formaggio, C. J. Martoff, Annu. Rev. Nucl. Part. Sci. 2004. 54:361-412

SubTErranean Low Level Assay @ LNGS

One of the best applications of the recipe:

- 14 HPGe installed underground
- Shielded with selected copper and lead
- Continuous anti-radon flux system

type	volume [cm ³]	rel. efficiency	FWHM [keV]
GeBer n-type	235	56%	2.0
GeMi p-type	403	86%	1.9
GePV p-type	363	91%	1.8
GsOr p-type	414	96%	1.9
GeMPI p-type	413	102%	1.9
GePaolo p-type	518	113%	2.0
GeCris p-type	465	120%	2.0
GeMulti p-type	4×225	4×96%	2.0

Best installation of HPGe measurements

At LNGS a lot of work was done to optimize HPGe detector background In collaboration with the producers new and innovative approaches are tested In particular very low background instruments were realized and used

detector	total and peak background count rate [d ⁻¹ kg ⁻¹ _{Ge}]				
	40-2700 keV	352 keV	583 keV	1461 keV	
GeMi	555 ± 7	$\textbf{4.1} \pm \textbf{1.0}$	1.4 ± 0.5	$\textbf{6.1}\pm\textbf{0.8}$	
GePV	498 ± 5	2.6 ± 0.7	$\textbf{1.8} \pm \textbf{0.4}$	$\textbf{3.2}\pm\textbf{0.4}$	
GsOr	442 ± 5	2.0 ± 0.5	0.76 ± 0.35	4.2 ± 0.5	
GePaolo	222 ± 2	1.1 ± 0.3	$\textbf{0.31} \pm \textbf{0.16}$	$\textbf{1.8}\pm\textbf{0.2}$	
GeCris	77 ± 2	$\textbf{0.29} \pm \textbf{0.22}$	< 0.13	$\textbf{0.88} \pm \textbf{0.22}$	
GeMPI	30 ± 2	< 0.07	< 0.06	0.24 ± 0.03	

background improvement

Examples from everyday life

Search for gamma lines: http://www.lnhb.fr/nuclear-data/module-lara/

Backup slides

Other approach to the background reduction

An **active rejection method** can be applied to background reduction

Two low background HPGe detectors operated in parallel to look for

- coincidence events
- anticoincidence events

Gamma-gamma coincidence

Analysis can study

- Full energy peak
- Compton scattering

This will improve detection efficiency

Coincidence spectra

Coincidence spectrum of ²²Na

Measured and theoretical spectrum are the same

Considering

- the background of the detectors
- the global coincidence efficiency

It is possible to evaluate a sensitivity of $100 \mu Bq/kg$ for ²³²Th measurements without placing the detector underground..

Beta-gamma coincidence

If you can dissolve your sample in a liquid scintillator...

Alpha/beta discrimination

It is possible to discriminates alphas from betas particles

 $PSD = \frac{Tail Area}{Total Area}$

Alpha/beta discrimination

Mass x Efficiency optimization

Efficiency is an important parameter for the optimization of the HPGe measurements

- $\boldsymbol{\epsilon}$ must be calibrated with dedicated measurement
- ϵ must be maximized
- ϵ is connected with each detector but also with each sample

In a standard approaches ε is determined using calibrated sources but

- only specific geometrical configuration will be calibrated
- only specific energy will be determined
- only specific radio nuclide can be tested

A possible solution can be found using Monte Carlo simulations

Monte Carlo simulations

As a guideline we'll consider the following use case:

- A user would like to compute the correction curve for a detector coupled to the surface of a simple cubic specimen.
- What is needed is just the following
 - A detailed geometric description of the specimen and the detector plus their mutual position in space
 - A description of the materials involved
 - The strategy to compute the efficiency curve for this specific setup

Monte Carlo simulations

There are notoriously several possible strategies to adopt for computing the efficiency response curve of a given setup. The one adopted in our demo is the simplest one:

a sampling of monocromatic gamma rays emitted at different energies from the specimen and collected by the detector

The choice of the energy sampling points, their number and their value is fully under the user's control. This of course affects the granularity of the response curve obtained.

We'll discuss other possibilities which are implemented in the simulation tool but not yet in the web interface version

Nuclear cascades correlate different gamma lines which can interact simultaneously. Coincident events **subtract counts from photo-peaks** and efficiency are lowered.

Nuclear cascades are correctly described starting from the nuclear level schemes Corresponding spectra (source dependent) are then produced

Efficiency curve (source dependent) is generated as pairs (E_k , N_k /N) where N is the total number of generated nuclear decays, E_k are the gamma energies of the radioactive isotope and N_k are the corresponding numbers of detected counts

Cascade effect increase with the solid angle under which the source illuminates the detector. An interesting example is a point-like source inside a well detector. This approximates a 4π coverage and we expect significant corrections.

- A source point placed in contact to the detector generates coincidences (due to cascade effects) which distort the efficiency measurement.
- The farther away the source, the less severe this problem becomes due to solid angle effects.
- The simulation program correctly considers the convolution of these effects for a spatially distributed source

Distance	Energy	Efficiency with no cascade	Efficiency with cascade
0	1173	3.21 ± 0.03	2.71 ± 0.03
0	1332	2.92 ± 0.03	2.42 ± 0.02
F	1173	0.50 ± 0.01	0.49 ± 0.01
5	1332	0.45 ± 0.01	0.45 ± 0.01
20	1173	$2.95E^{-02} \pm 2.70E^{-03}$	$2.84E^{-02} \pm 2.70E^{-03}$
30	1332	$2.62E^{-02} \pm 2.60E^{-03}$	$2.23E^{-02} \pm 2.40E^{-03}$

A STD way to approximate efficiency curves for distributed sources is by averaging experimental efficiency curves for point-like sources at extreme positions.

The reliability of this approximation depends usually on the source extension and can imply significant errors

Energy (keV)	Efficiency (%) Average	Efficiency (%) Distributed
100	13.11 ± 0.11	4.9 ± 0.04
400	6.95 ± 0.08	3.05 ± 0.03
900	3.44 ± 0.06	1.67 ± 0.02
1500	2.29 ± 0.04	1.14 ± 0.02
2300	1.54 ± 0.04	0.82 ± 0.02
3000	1.18 ± 0.03	0.61 ± 0.01

Alpha Spectroscopy

Pb-207

a.i. = 22.1%

U and Th chains show a sequence of alpha decay

It will be possible to test all the chains from primordial to the last nucleus

Due to the high dE/dx of alpha particles:

- Measurements are **sensitive on surfaces**
- We can study the contamination profiles
- We can measure specific chain parts

Large detector surfaces are useful

Alpha Spectroscopy - System

A Complete Alpha Spectroscopy System Consists of:

- Alpha Particle Detector with high resolution, low background, and detection efficiency appropriate for the application.
- Vacuum Chamber to ensure α-particles can reach the detector as they are easily attenuated by air.
- Recoil Contamination Avoidance Package (RCAP) to keep the detectors from becoming contaminated by daughter products that may leave the sample material (negatively biasing the sample holders, to repel the ions from the detector).
- Electronics for detector signal processing and storing the energy data
- Analysis Software to control the electronics, analyze spectra, establish quality control processes, and integrate data with laboratory data management systems.

Alpha Spectroscopy - Detector

Silicon Surface barrier detectors:

- High energy resolution (~35 keV)
- Thin entrance window (40 nm)
- Intrinsic low background
- Small thickness to minimize cosmic ray effects
- Small/medium surface area (10 cm²)
- Unclear environmental background

Alpha Spectroscopy

Surface contamination became an important aspect for future low background experiments

Strategies to identify surface treatments are crucial in order to minimize the effects

Detailed analysis could be possible if detector background is under control

Typical sensitivities 10⁻⁷/10⁻⁸ Bq/kg

(not only) Alpha Spectroscopy

• Timing correlations

Fig. 1 Experimental data (black) and MC simulations (green) referring to the measurement of the copper plate contaminated with the ²²²Rn daughters belonging to the ²³⁸U chain. In the left pad we show the lower energy range where we searched for ²¹⁴Bi β -events in time coincidence with ²¹⁴Po α -events (right pad). The MC spectrum, comprised of ²¹⁴Bi and ²¹⁴Po events only, is normalized at the ²¹⁴Po α peak and, as expected, does not match the experimental data at low energies because of contributions from other β -emitters and environmental background. By selecting ²¹⁴Bi $-^{214}$ Po delayed coincidences in both experimental (red) and MC (blue) data, we get a good reconstruction of both ²¹⁴Po α -peak and ²¹⁴Bi β -spectrum.

Alpha Spectroscopy

Fig. 5 Measured spectrum (black) and selection of 220 Rn– 216 Po delayed coincident events (red). We show the MC simulated spectrum of the full 232 Th chain (green) normalized to the same integral of the measured spectrum in the E > 2 MeV range, and the corresponding selection of 220 Rn– 216 Po coincidences (blue). The difference between the selected coincidences in the experimental data with respect to the MC simulations is compatible with the number of random coincidences estimated from the plateau in the fit of Fig. 6.

Details in https://link.springer.com/article/10.1140/epjc/s10052-021-09759-5

Alpha Spectroscopy

Sample: pure copper plate

Alpha Spectroscopy - Calorimetric approach

Also operating a certain material as <u>cryogenic calorimeter</u>, we can perform interesting α -spectroscopy analysis

CUPID -0 DATA

Fig. 2 Top left: CUPID-0 $\mathcal{M}_{1\beta/\gamma}$ spectrum with the following peak labeling: (1) 65 Zn, (2) 40 K, (3) 208 Tl. Top right: $\mathcal{M}_{1\alpha}$ spectrum with the following peak labeling: (1) 232 Th, (2) 228 Th, (3) 224 Ra, (4) 212 Bi, (5) 212 Bi + 212 Po, (6) 238 U, (7) 234 U + 226 Ra, (8) 230 Th, (9) 222 Rn,

(10) ²¹⁸Po, (11) ²¹⁴Bi + ²¹⁴Po, (12) ²¹⁰Po, (13) ²³¹Pa, (14) ²¹¹Bi, (15) ¹⁴⁷Sm. Bottom left: \mathcal{M}_2 spectrum. Bottom right: Σ_2 spectrum with the same labels used for $\mathcal{M}_{1\beta/\gamma}$ peaks 58

Alpha Delayed Coincidences - Calorimetric approach

We can exploit <u>delayed coincidences</u> to investigate the bulk vs. surface contaminant location

 $P(\boldsymbol{D_Q} \,|\, \boldsymbol{P_Q}) \approx 1$

 $P(\boldsymbol{D_Q} \mid \boldsymbol{P_Q}) < 1$

Containment efficiency and detection probability of delayed coincidence depend on the contaminant location

Details in https://link.springer.com/article/10.1140/epjc/s10052-021-09476-z 59