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What I would like to do here

There are excellent books/lectures/blogs/sites on everything we will discuss, and

more.

E.g.

R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical
Sciences, Wiley, 1989

G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998
Also online lectures and talks https://www.pp.rhul.ac.uk/~cowan/

G.D’Agostini, Bayesian Reasoning in Data Analysis: A Critical Introduction, World
Scientific Publishing 2003.

PDG, Statistics summary: https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf

Gelman et al: Bayesian data analysis: http://www.stat.columbia.edu/~gelman/book/

https://telescoper.wordpress.com


https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf
http://www.stat.columbia.edu/~gelman/book/

What I would like to do here

There are excellent books/lectures/blogs/sites on everything we will discuss, and
more.

With our limited time together, I'd like to:

e Introduce basics of statistical analysis and survey some of the ways we use statistical
analysis in UG physics

e Review basic and advanced concepts in probability, decision making and inference
e Zoom into some delicate points relevant to us, underground people

e Introduce tools and techniques that helped me in understanding and doing statistics

In the end of our sessions | hope you will see the beauty and importance of
statistics, and be encouraged to further investigate, simulate, read and do



Work Plan

Intro: Statistical bloopers

Part 1. Probability:

Part 2: Distributions and sampling
Part 3: Estimation

Part 4; Inference






The case of the wavy hand
But what does it mean?
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The case of the wavy hand
But what does it mean?
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9 OUT OF 10
DENTISTS

WHO TRIED COLGATE® SENSITIVE PRO-RELIEF™ TOOTHPASTE
WOULD RECOMMEND IT FOR SENSITIVE TEETH'
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Colgate® Sensitive Pro-Relief™ Desensitising Polishing Paste o
Clinically proven to give instant and lasting sensitivity relief }J I
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Independent Survey April 2011 n=77

Colgate’ YOUR PARTNER IN ORAL HEALTH.

Hamlin et al., Am J Dent. 2009 Mar;22 Spec No A:16A-20A.
Schiff er al., Am J Dent. 2009 Mar;22 Spec No A:8A-15A.
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What does it mean ?

For my birthday | got a box with 1000 resistors.
100Q each, with 5% tolerance

Q: How is the tolerance defined? 1 sigma? 3 sigma?

A: “only” 95-105 ohm resistance. By construction.

Q: What is the probability distribution of the resistivity?

A: Yes

Q: Was the selection done by Design or by choice?

f(x) Probability

A: ahhhhh? ..
7% b-a
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Is the treatment effective?
100 patient tested, 50 young and 50 less young

Researcher A looked at the results and concluded that...

-

Young patients:

S

Old patients:

N

Treated 1 9 10 10 %
Nottreay 11 29 40 ( 27.5 % 5
12 38 50




Is the treatment effective?
100 patient tested, 50 young and 50 less young

Researcher B looked at the overall results and concluded that...

Recovered Not recovered Total % recovery
Treated/ 20 30 50 ‘@ )
Not treated | 16 34 50 32%

36 64 100




Is the treatment effective?

Young patient Old patient
Researcher A concluded: R NR Tot %R R NR Tot %R
“Treatment is effective”
T 19 21 40 47.5% T 1 9 10  10%
/NT 5 5 10( 50% ﬁT 1129 40 @5@
24 26 50 12 38 50
Recovered @ Notrecovered @ Total % recovery
Researcher B concluded: .
“Treatment is not effective” ﬁ reated 20 30 50 @’)
Not treated 16 34 50 32%
36 64 100




GCase fatality rates in China & Italy
Overall By age

Italy ®m China
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https://arxiv.org/pdf/2005.07180.pdf



https://arxiv.org/pdf/2005.07180.pdf

The case of the illusive variable
Simpson's Paradox
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Simpson's paradox
Graphical illustration

e Slope = Fraction of successes
e Steeper vector = more success
n
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The case of the illusive variable

Simpson's Paradox
Drawing two different conclusions from the same data, depending on how

you divide things up

We don’t know what we don’t know...

https://www.youtube.com/watch?v=t-Ci3FosqZs&ab_channel=Dr.TreforBazett



The case of the bad fit

Good news! GOVID-19 is less contagious at higher
temperatures...

4.5 1
4.0 1

3.5 1

3.04
2.5 4
2.0 4
1.51

1.0 1

R and Temperature (Panel Data)

March 2020

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3551767

-20 -10 0 10 20
Temperature (*C)

Peter Laursen
@anisotropela

Fitting a 36 degree polynomial rather than a
straight line, it seems indeed that
contagiousness decreases somewhat with
temperature, but only until 23.5 °C, after which
it explodes!

In other words, your data show that we must
take immediate action to avoid global warming!

R and Temperature (Panel Data)

Temperature (°C)

12:34 AM - Mar 19, 2020 @

Q 86 O Reply & Copylink

Read 3 replies



https://arxiv.org/abs/1011.5004

The case of the clerical error

Observational Constraints on the Ultra-high Energy cosmic
Neutrino I:'Iu:fromtheSeeondl:'llght olthe ANITA Experiment
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March 2010: “ In a blind analysis,
we find 2 surviving events on a
background, mostly anthropogenic,
of 0.97+£0.42 events”

©—% HiRes-2008
<+— ANITA-I-Rev.-2010
<4 ANITA-1I-2010

E Fe(E) (km=2 yr=! ster-')

R mnmol

Nov 2010 Erratum: * Aﬁ”"’”””ﬁ‘l’)h Cdtion, we subsequently
determined that due to a clerical error one of the two
surviving events, Event 8381355, was actually one of the
inserted pulser events. The fact that this event survived
its subsequent scrutiny we consider as a demonstration
that the blinding procedure was truly valid”




The case of the mysterious signal

High statistics search for ultrahigh energy y-ray emission from

Cygnus X-3 and Hercules X-1
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Figure 1:  Published results from d-based i indicating evidence for gamma-
ray emission from Cygnus X-3 during the period 1975-1990. The circles indicate results from
atmospheric Cherenkov telescopes, the squares show data taken by air shower arrays, and the
triangle indicates the result from the Fly's Eye experiment. The dashed curve is an approximate
power law fit to the data with a slope of —1.1. Not shown in this figure are several upper limits
to the flux of gamma-rays from Cygnus X-3 during this same epoch. The two points at extremely
high energy (5 x 10° TeV) have been slightly displaced from each other for clarity.

- Cygnus X-3, 1990-1995
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Figure 12: Flux limits reported between 1990 and 1995 on the steady emission of particles from
Cygnus X-3. The squares (5) represent the results of this work. Open squares indicate limits on
the emission of any neutral particle that creates air showers. Filled squares indicate limits on the
emission of gamma-rays. The circles (1-4) represent results from other experiments: 1. Tibet [92],
2. HEGRA [95], 3. CYGNUS [93], and 4. EAS-TOP [94]. The dashed curve is the approximate
power law fit to early results (reproduced from Figure 1).

Chicago Air Shower Array (CASA) + Michigan Muon Array (MIA), 1992-1999

Using data taken with the CASA-MIA
detector over a five year period
(1990-1995), we find no evidence for
steady emission from either source at
energies above 115 TeV. The derived upper
limits on such emission are more than two
orders of magnitude lower than earlier
claimed detections

https://arxiv.org/abs/astro-ph/9611117



The case of the statistical fluctuation
750 GeV diphoton excess
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A deviation from the Standard Model background-only hypothesis corresponding to 3.4

standard deviations is ved in the 2015 data for a resonance mass hypothesis of 730 GeV.
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The case of the illusive background
Primordial gravitational waves

10 v A
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Gravitational waves turn to dust after
claims of flawed analysis

Primordial gravitational wave discovery
heralds 'whole new era’ in physics

4 Jun 2014: Astronomers who thought they had
detected echoes of the big bang may have only seen

the effects of space dust
160 comments

17 Mar 2014: Gravitational waves could help unite
general relativity and quantum mechanics to reveal a
‘theory of everything’

& 1675 comments

https://arxiv.org/abs/2110.00483 Muttipole



https://arxiv.org/abs/2110.00483

The case of the mysterious plot

Analyses of 123 Peripheral Human Immune Cell Subsets:
Defining Differences with Age and hetween Healthy Donors and
Gancer Patients not Detected in Analysis of Standard Immune
Gell Types "
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https://journals.sagepub.com/doi/pdf/10.5772/62322



Part 1 memes conclusions
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My top 10 (Paranoid) advices for doing
statistics

= All models are wrong, but some are useful.

= Always read the fine prints (in papers...in codes....in manuals...).

= Visualize the numbers. Be creative.

= Black boxes are scary.

= Try it yourself - Best way to understand - is to do it!

= Comment everything (not just for other users, also for the future you)

= Test your code often on “simpler” and “diverse” scenarios. Do sanity checks
= If your code compiles on the “first trial” - beware!

= Always wear sun screen



Part 1:
Probahility




What is probability?

Depends who you ask....
A Mathematician, two physicists and a politician walk into a bar....
The bartender asks them: “Can you tell me what probability is?”

The Mathematician says : “A Number between 0-1, assigned to objects in a
sample space”

The Frequentis says: “Frequency of an outcome in a repeating experiment”

The Bayesian says: “Probability is a subjective term, representing our degree
of belief in a hypothesis”

The politician says: “Definitely yes!! Probably not!!”



What is probability? The building blocks

“Probability space”

@ample space Event space Probability )

Sample space Q: The set of all the outcomes of a random experiment. An outcome is an element in
the sample space wEQ.

Event space S: A set whose elements A € S (called events) are subsets of Q (i.,e, A & Qis a
collection of possible outcomes of an experiment).

Probability measure P: A function P : F = R that maps objects in S to the interval [0, 1].



What is probability?

Let S denote a sample space with a probability measure P defined over it, such that probability of
any event A C S is given by P(A). Then, the probability measure obeys the following axioms:

Kolmogorov axioms: (1933)

Some set S... A,B are subsets of S.
ﬁeminder: a set S. subsets of S are A and B\

e Non negativity: For all ACS, P(A)=0
e Unitarity: P(S)=1 C’»
e Countable additivity:

AUB
Union: || Intersectlon &&

@ e

If ANB=0 = P(AUB) = P(A) + P(B)




We can also deduce that

We can also deduce that:
e PA)=1-P(A) (Aisthe complement of A)
P(AUA) =1
P(2)=0
If A C Bthen P(A)<P(B)
P(A U B)=P (A) +P( B)-P( ANB)

Can be deduced from Kolmogorov axioms

ﬁeminder: a set S. subsets of S are A and B\

D

AUB
Union: ||

*0»

Intersectlon &&

I Dy




Roll two dice

The sample space:
Q={1,2,3,4,5,6}x{1,2,3,4,5,6}
={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),......, (6,4),(6,5),(6,6)}

The event space:
S=Various combos of outcomes, e.g.:

What is L, the event that the sum of the dice is 7::

L={(1,6), (2,5), (3.4), (4.3), (5.2), (6,1)} —— PL=116
What is M, the event that the sum of the two dice is 6:

M= {(1,5), (2,4), (3,3), (4,2), (5,1)} > P(M)=5/36
Whatis N ?

N={(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)} ———> P(N)=1/6



w2(Jerry)

0

Graphical representation of sample space

Ben & Jerry plan to meet for ice cream hetween noon
and 1 but they are not sure of their arrival times

the event that the event that the event that Ben arrives
B arrives after J J arrives before 12:45. up to 15 minutes after Jerry

1 1

<) 3 S

N N1 N

= 3 S

0 1 O0 1 0 0
w1(Ben) w1(Ben) 0 wiBen) 1 0" wiBen) 1

Probability Ben arrives same time or after Jerry = 0.5
Probability that Jerry arrives first and Ben arrives at most 15 minutes after Jerry= 7/32=0.21875.
Probability that Jerry arrives first and Ben arrives at most 1 minutes after Jerry =0.0165



What is probability?

R




Belative frequency

Suljjective probahility

The probability of the event is the proportion of
times that the event would occur in a very large
number of hypothetical repetitions of the random
phenomenon.
Probabilities are associated only with ¢

U pyr

ﬁﬁﬁhmf

P(A)=lim #outcome A in n measurs

n—o n

Elements of s = possible outcomes of &
repeatable measurement

The probability is a the “strength of believe” that
it is correct.

Probabilities are associated with state of
knowledge on parameters - given some prior
ies, how should they change provided

egree of belief that hypothesis A is true

......

of s =hypotheses that are true or false
(“hypothesis space”). Mutually exclusive.

Subset A = event = corresponds to the
occurrence of any of the outcomes in the subset

Subset A = set of one or more hypothesis

“Frequentist approach”

“Bayesian approach”




Conditional probability

P(ANB)
P(B)

P(A|B) = Probability of A given B =

P(A N B)= intersection = Unconditional probability involving both events
P(A|B)= Conditional = Conditional probability of one event, given the other

P(B)= Marginal=Unconditional probability of a single event



P(AIB) = P(BIA)



Law of total probability
If:  A,...,A_ are disjoint
&& if: A UA U..UA =S

then:  pp) = Z P(BN A;)

(Conditiohal
probability)

P(B) =Y P(B|4)P(4)

Sample space S

.




Law of total probability

Example:
The “Look over there!!!” game [ "acchi muite hoi" (o5 RLNTRA.])

How to play it:
e Two players face each other

i

e On the count of 3, player A points her finger up, down, left or right.

e In the same time player B points his head up, down, left or right.

e If the directions are the same, player B wins the game. &




What are my chances to win if I go fir

A=event of winning the game

B=event of winning the game on the first round

B’=event of not winning the game on the first round

P(A) = probability of “me” winning the game=p

Bv the Iaw of total probability:

R0 N6

SDoIve for p

https://mangaboat.com/manga/karakai-jouzu- no-takagl -san/ch- 082/



How to code the lookaway game
l8dRBiRsRseBhaIhubRE bipstsRBdkINin

= Loop untll there |s a win
= Run the games 1000 times
Farhlee prfeabilifthafrptay@ i winning the game is the fraction of times the




Independence

if P(ANB)=P(A)P(B) subsets A and B are independent. = and P(4|BJ|) =
Independet events doesn’t necessarily mean that ANB=0:

= L : Getting sum of 7: {(1,6),(2,5),(3,4),(4,3),(5,2),(6,)]  P(L)=%
= M: Getting sum of 6: {(1,5),(2,4),(3,3),(4,2),(5.)} P(M)=5/36
= N: Getting four on first :{(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)} P(N)=%

Are L and N independent?
LAN ={(4,3)} = 1/36 P(L)-P(N)="%*1%=1/36 = Independent...
P(NIL)=if we know we got sum of 7, then the probability of getting 4 on first is ,
which is identical to the probability of getting 1.6 anyhow

Are M and N independent?
MNN={(4,2)} = 1/36 P(M)*P(N) = 5/36*%=5/224 = not independent
P(NIM) = if we know we got sum of 6, then the probability of getting 4 on firstis ’




Bayes theorem

Using the conditional probability we can say

P(ANB
PAIB) = ~ gy
P(B | A) = P(ANB) _ P(BNA)
CIA= @~ ~TPm
P(ANB) P(BNA) P(B|A)-P(A)
PAIRE TRy T TRE) T T PE)
P(BIA)P(A)
PAIB) = — o




Example: An antigen test I took came positive*
What is the probability 1 am actually sick?

/_‘_ D+ :I got the disease. | am sick ! \ True negative P(T-ID-)=99.7%="specificity”
% D-: I did not getthe disease. | am healthy False negative P(T+D-)=0.3%
( True positive  P(T+ID+)=53.8% = “sensitivit?’
n - - j T+ :The antigen test came poistive
L False negative P(T-ID+)=46.2% y
@:. - 1 T-: The antigen test came negative / o =
Prevalence P(D+)=0.1%
P(T+|D+)-P(D+)
P(D+[T+) = P(T+) | 0.1% of population sick y
P(D+)=0.001 P(T+ID+)=0.997
P(T+) = P(D+)-P(T+ID+) + P(D-)-P(T+ID-) =0.001*0.538 + 0.999*0.003 = 0.005675
For PCR tests: Specificity 99.7% ,
P(D+IT+) =015 =15%

Sensitivity 95.7%
P(D+IT-) =...= 0.05%

Ajlgewnssaid «



Random variables

A Random Variable - takes on a specific value for each element of the set S

Random variables can be:
e Discrete / Continuous
e Single value / vector
e Finite /infinite sample space

E.g.:
diée hd sum of the two dice e.g.: {X=4}={(1,3),(2,2),(3,1)} is the event that the sum of the two
MigdbevangeioBtwo values e.g. {Y=3}={(1,3),(2,3),(3,3).,(3,2),(3,1)} is the event that the

A& RurRlioa ohatrandben warigkileds alsalemandemiyariable. That is, if X is a random variable and




Erom Bayes theorem to Bayesian Statistics

We can use Bayes’ theorem to assign probabilities to hypothesis (H), based on
assumed knowledge (I), which can be updated when data (X) become available.

Probabilty of a hypothesis (H) given a data (X p( fr | x) — P(X|H)- P(H)
P(X)

P(X|H) = The likelihood - Assuming some model, what is the probability to get data?

P(H) = (actually P(H|l)) = Prior probability - before including the new data
= Determination of the prior is subjective. Even a flat prior is informative.

P(H|X)= posterior probability - how the prior probability changed based on the new data

P(X)=(actually P(X|l)) = Normalization over all possible hypothesis. Estimated using the law of
total probability = [P(X|H)P(H)dH



What does this mean?

g=10.1+04—
S

P(X|H)- P(H)
P(X)

P(H|X) = « P(X|H) - P(H)



Part 2:
Distributions



PME - Probability Mass Function

If the outcome of an experiment is discrete x:

P(x) is the probability mass function
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PDE- Probability Density Functions

If the outcome of an experiment is continuous X:

f(x) is the probability density function (PDF) 0.05
PlA)=P(x€[x,x+dx])=f(x)dx 004

: >
[ fix)dx=P(a<x<b) 20.03

a 3

o
= f(x) is nonnegative 0.02
= PDFs are normalized [ f(x)=1 001

= (x) is not a probability

0.00

20 30 40 50 60
bill_length_mm



Palmer Archipelago penguins..dataset

A great intro dataset for data exploration & visualization

Body Part of Penguin

head

https://github.com/allisonhorst/penguins

GENTOO/

chwTRAP/

eye

bill
flipper

" webbeb fest



PDE- Probability Density Functions

If the outcome of an experiment is continuous

f(x) is the probability density function (PDF)
P(A) = P(x € [z,x + dz]) = f(x)dx

/f <z <)

) is nonnegative
+oo
= PDFs are normalized f(z)dz =1

— 00

= (x) is not a probability
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0.00
20 30 40 50 60 70 80

bill_length_mm



PDE- Probability Density Functions

If the outcome of an experiment is continuous X:

f(x) is the probability density function (PDF) 0.05
P(A) = P(z € [z,x + dz|) = f(z)dx 0.04
oy
/ f(z a<z<b) £0.03
o
(@)
) is nonnegative 0.02
= PDFs are normalized [ f(z)dz =1 0.01
= (x) is not a probability
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bill_length_mm



PDE- Probability Density Functions

If the outcome of an experiment is continuous X:

f(x) is the probability density function (PDF) 0.05
P(A) = P(z € [z,x + dz|) = f(z)dx 0.04
oy
/ f(z a<z<b) £0.03
o
(@)
) is non-negative 0.02
= PDFs are normalized [ f(z)dz =1 0.01
= (x) is not a probability
0.00

20 30 40 50 60 70 80
bill_length_mm



CDFE - Cumulative distribution function

b
F(b)=P(X<b)=[ f(X)dX

flX)=

dF(X|
dX

Non-decreasing, i.e. ~ a<b=F(a)<F(b)

Cannot be less than O, or more than 1
0<sF(X)=1
lim F(X)=0 lim F(X)=1

X3-x Xox
PlasX<b)=F(b)-Fla)
Complementary CDF (1-F(x))

Proportion

1.0

0.8

o
o

&=
N
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0.0
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The fun things we can with a (to a?) PDF

N s +00 . | .
Z x; =1 —— Consider discrete f(z)de =1 Consider
i=1 l random variable > ' continuous
g X with pmf P(x) ' 1 ~ random- varjable
x-with pdf f(x)




The fun things we can with a (to a?) PDF
Reduce it to a number

Z T, =1 —— Consider discrete
i=1 random variable
X with pmf P(x)

Consider
continuous

random varjable
X With-bdf f(s()
x-with- paf ¥

. nD”H Hﬂnﬂnn_ Kﬁ
Mean: Efr] =3 rP(r) Elz] = / z f(z) dz
Variance: Vir] = E[(X — E[X])?] = E[X?] — E[X]?

Standard deviation: o=sqrt(V[x])



The fun things we can with a (to a?) PDF
Confidence Interval N

Z T, =1 Consider discrete ' f(x)d;q; =1
=1 random variable =
x with pmf P(x)

Consider

continbous
random varjable
x with |pdf f(x)

_nn”” Hﬂﬂnnn__

Pz, <z<wz)=>"z;~C Pz- <z <z)=[" f(z)de = C




The fun things we can with a (to a?) PDF

[ ] [ |
Lower limit
N
Z T, =1 Consider discrete
1=1 random variable

X with pmf P(x)

~ (C

nnﬂ” |||.‘.

Px>z )=,

+0o0 . | . ,
/ f(z)dz|=1 Consider
- ' ‘continuous
random-varjable

fx)

x-with pdf




The fun things we can with a (to a?) PDF
Upper limit
N

CL’i:l

Consider discrete Consider
random variable

x with pmf P(x)

103

i continuous
random-varjable

x with pdf f()()

Plz<z,)=Yrz~C < [5 f(z)dz=C



From data to PDE

Infinite sample size
Zero bin width
Normalized to 1
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PIn case there are several random variables (e.g. x and y):

/—Z /_Z f(z,y)dzdy = 1

f(z,y) >0

Payea) - [ " fla,y)dady

P(ANB) = P(x found in [x,x+dx] and y found in [y,y+dy]) = f(x,y)dxdy

If the variables are independent:

P(ANB) = P(APB) =  f(z,y) = fa(2)fy(y)



Multivariate PDEs - Marginalization

Marginalization:

Extracting information for some of
the components

fa:(w) :/f(way)dy

The expectation value e.q.

Bl = [ [at@ydody = [a.@)do=p,




Multivariate PDFs - Conditional

The probability that y equals Y, given that x=X.

Pylz) =ply=Y|z = X)

_ Plz=Xand y=Y)  joint  f(z,y)
o P(z = X)  marginal f(x)
e The probability is:

b
P(agysz)rx:X):/ £y 2)dy

e Normalization still holds:

[ 1wloyy =1

e If the variables are independent:

P(ANB) = P(A)P(B) = f(xy)=f (X (v)



ply) and p(y|x = 4)

A)

Joint PDF p(x, y)

== marginal p(y)
- conditional p(y|x = 4)

T T T

0.2 0.4 0.6
ply)




Covariance & correlation

Covariance:

covlz,y] = Elzy] — papy = E[(x — pa)(y —

rho = 1.00 rho = 0.93
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’ G e
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40 o 40 . * ey £
, e, 0, . .
£
P 20
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Correlation coefficient:

11y)] __covz,y]
Pey'——— — =
Ox0y
rho = -0.56
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If we have several random variables....

covariance matrix Correlation
: Vij = cov[acz-,a:j] = P;ij0i0; o COV[iL'i,.’Ej]
Pij =
0;0;
[ of P120102 ... Pin010n \
( 1 pis =« Pin \
P210201 0% ce. P2n0207
pa1 1 ... pon
7 e
p —
\ Pn10n01  Pn20pn02 ... 0121 )

\pnl Pn2 - 1 /
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Statistics
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PART I
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The INFN School on Underground Physics




The likelihood function

Probability of data given the parameter

Data value(s) {x1,x2,x3,...xn} are drawn from some f(x;0):
n

= Their joint pdf will be: f(x;;0)f(x;0)...f(x ;0) H f(z:;0
=1

For example: 10 poisson distributed values around 5:

Fg.[9584155485]

P(5)= |[Poiss(x;5)=Poiss(9;5)-Poiss(5;5)-Poiss(8;5)-Poiss(4;5)...= 0.036:0.175:0.065-0.175...

i=1

P(4)= H’oiss(xi;4)=Poiss(9;4)'Poiss(5;4)'Poiss(8;4)'Poiss(4;4)...=0.013-0.156-0.029-0.195...

i=1

P(6)= [ [Poiss(x;6)=1.3e-10

175

150

125

100 1

075

0.25

0.00

1=

L(z; |6) = Hf(mi;H) In L(z; | 6) Zln f(xi;0) —InL(z; |0) =

In(L)

N
— Zln f(z:;0)
i—1

N=10, mu=5

-225

-25.0

=275

-30.0

-325

-35.0

=375

-40.0

oln(L)

o6

=1.52e-10

=1.96e-11

o=0

=0



Binomial
Multivomial
Poicson
(niform
Exponential

Gaucsian

Branching ratio
Hictogram with fixed N
MNumber of events found
Monte Carlo method
Decay time

/Mea(’uremeht error

Chi-cquare
Cauchy
{andav
Beta
Gamma

Ctudent’e t

Goodnece-of-Fit

Macs of resonance
Lonization energy locs

Prior pdf for efficiency

Sum of exponential variables

Recolvtion funetion with Aa/jucta.é/e toils



A Bernouli trial

Bernoulli trial - is an experiment where s trials are made of an event, with an
independent probability p for success, and g=1-p for failure, in any given trial.
= Each trial has two possible outcomes success/fail

= The probability p of success is constant for each trial.

= The probability g=1-p for failure is constant as well

= Each trial is independent.



Binomial distribution

The discrete probability distribution to
obtaining exactly n successes out of N
Bernoulli trials. Each trial is true with

binomial: N=5 P=0.5 binomial: N=10 P=0.5 binomial: N=20 P=0.5

probability p, and false with g=1-p oach -
= n is the random variable is n => NF10 oaso } =20
B os0 P=0.5 05 o -0.5
= N and P are the parametres Z. .
" 5 g
f(n.N p) = :( )1)" (IN—" N' 1 N-=n q—éms - [I o " ”
T A |~ > 0.0 000 —H = m_ g0 =l |-
* "I!(N—")! P ( p) 0 z T N o 2 n 8 10 0 5 o 15 20
Number of Probability
permutations X per one
getting n out of N permutation
N
E[n] = ) nf(n;N,p)=Np
n=0

V[n] = E[n?] — (E[n])? = Np(1 - p)


https://mathworld.wolfram.com/DiscreteDistribution.html
https://mathworld.wolfram.com/BernoulliTrial.html

Example, Bayesian coin flip:

he likelihood:probability of observing the data;
given H. H is the binomial distribution so:

px ()= L gy

Prior: We will start with a fair coin

e x=event of getting h P(H | X) —
heads and t tails
e p=probability for head




Example, Bayesian coin flip
What if I threw the coin 20 times and got 5 heads...

Prior =FlatPrior PriorFair,goin, wide Prior=Fair coin, narrow
] —— Prior
= Likelihood 0.25 1
0.20 - Posterior
P(XIH) .

0.15 1
0.15 1

P(HI
P(H
0.10 1 ( )
010 1
0.05 1 j \ 005 |
0.00 |
00 02 04 06 08 10

0.00 1

00 02 04 06 08 10

h + t)! 1 (=052
P(H'X)OCP(X'H)P(H)zﬁph(l—p)tx e 202
h't! o/ o
P(H) =09 x ——¢ % +0.1x1 P(H)= —L_ 55"
E.qg. | i i . — V. 202 . — 2052
g alternative priors o-m - 27T€




Poisson distribution

N! 7 N-n
Binomial f(n;N,p) = =ml’ a-p",

With
N=>c and p=0 and use v=Np=finite

Vn

fnv) = —e™"
n!

(n > 0)

° ° ° ° °
= N N W W
& 3 & g &

Elnl=v, Vn]l=v.

B
—
-

[

tiid

Discrete distribution that describes the probability of getting exactly N events in
a given time, if they appear independently and randomly in a constant rate.

nu=1



An example of a poisson process

) binomial: nu=10
Assume that | get emails at rate of 10 messages

per hour, as a poisson process 0.12 -
What is the probability of me getting exactly 10 0.10 )
emails in the next hour?
0.08
e—lOAIO o 56 ~
PX =10) = fx(10) = o1 = 01251 ' .
. 0.04
What is the probability of me getting 453
no emails in the next hour? ' [l I]
0.00 _.__n[] SINININININININIS I]I]l:lu__~_

05,00 0 5 10 15 20 25
e YA

ol e 10 = 454%107°

PX =0) = fx(0) =



Radioactive sources : Binomial or Poissonian?

Is it binomial?

e Two outcomes: Nucleus either decays or
doesn’t
e Events are independent of each other.
e The mean rate (events per time period) is
constant.
In2

[ =

AV

e Two events cannot occur at the same time.

Alas! Needs to know N ! N= A
T

Is it poissonian?
Yes, if:

e Decayed nuclei can “decay again”,
so N is constant (which is nonsense)

Or

e Number of nucleiis “large”
compared to the decay rate and
measuring time, so N is “Constant.




Radioactive sources : Binomial or Poissonian?
Measuring the decays over 1 hour, for 1000 sources

Cs-137 7,,,~30 years 1uCi(3.7e4 Bq).

=73-107" -
30 years sec

No = 4 =51 x 10"

r

In2  In2
_Tl2

_ . 6
In1hour:  An = 130 x 10° << N . Probability of a

nucleon to decay

Rb-82 Tl/—,”“75 sec 1mCi (3.7e7 Bq)./ over 1second
Fr=42=—12 =910

75 sec secC
No=4 =4x10° ox L0

lpfour:  An = 30 x 10° > Np(!1y °




PMT example 1

Trigger rate on a single PMT

A PMT triggers at rate I' Hz. Each trigger is T seconds
long. All triggers arriving within the time window are

counted as n hits.
0.6

The expected number of hits in the window T is :
0.5

w=I'T o
The rate of it triggering n times in this time window is the
rate of a single trigger times the probability of getting n-1

triggers following: 0.2

', =T"-poiss(n —1|pu) 01
n—1
=T1. e_:ul . —Ml A
(n—1)!
n—1
—T. —I'r | (FT)

(n—1)!

Trigg

-=1=1=2
—-=1=2 =2
=4 =2
=4 1=10 =2
=»=1=4 =5

er rate

AN S

0 5 10 n 15 20 25 30

e The longer the time window, the slower the trigger rate
e The longer the time window, the larger n
e The faster I the trigger rate



PMT example 2
Rate of n hits over m PMTs

In this scenario we are counting hits. If a PMT got 2 hits in the same trigger window, it will be

counted as “2”

A PMT triggers at rate I' Hz.

The rate of a single hit over all m PMTs is : I‘}n = m-T

The expected number of hits in the time window is: yu = I‘,ln cT=m-I-7

The rate in which total of n hits (not PMTs) are observed over all PMTs is:

L

T - poiss(n — 1| u)

m.F.e_/J’L

m .

T .

€

1

(n—1)!

—mI'T

(mD7)" !

(n — 1)!

This scenario (using m PMTs with rate I) is identical to
the previous (using 1 PMT with rate mI')

So this is like example 1, but with a trigger rate m times higher.



PMT example 3
Rate of m PMTs over n PMTs

In this scenario we are counting PMTs... If a PMT got 2 hits, it will be counted as “1"....
A PMT triggers at rate I' Hz.
The probability that a PMT didn’t trigger is: pg = poiss(O | ,u) — e M

The probability of exactly m PMTs triggering is the probability that m triggered, and (n-m) did not:
m)!

Dn = ( (1—po)" - py'

m —n)!-n!
So...using F71’n — m - " Which is the rate of a single hit over m PMTs is

1\t N
F;:l = Flln *Pn-1 =TI+ BT (;n—(::l)!.(l,}”.l)g . (1 _p())n—l . pgx n_

o - (m-1)! 4D n-—1 i 1
=m-I: (m-—n)!-(n—l)!( e 1) e s



rate [Hz)

How coincedence lowers the trigger ratre
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| ®
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' ®
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Time between triggers in a Poisson process

In a poisson process events occurs on average at rate A per unit time

In average there will be At occurrences per time t.

e M(\t)”
p(z; M) = ————
The probability of observing no events in time tis
P(0) = e
This is the cumulative distribution, we will differentiate by t and get the PDF:

fO =2 e bR



The exponential distribution
fx(x)a

—At . 1
f(t) B Ae if £20 E(.’I}) _ T
0 if 1<0 1
Fo) = 1—e™ ift>0
0 if t<0

Memoryless - The past has no bearing on its
future behaviour = Waiting time paradox”

Plzx>s+tlz>s)=Plx>t)=e




Gaussian distribution

For large A, Poisson = Gaussian with p=A and o=sqrt( A)

1.0 1.0
| I =0, 02=0.2,=— .
H=0, 02=1.0, ==
0.8 )
0.8 H=0, 0%=50, ==
L - H=-2, 0%=05,— N
~~ 0.6
—~ 0.6 X
NI T .
SSE 0.4 & o
i 0.2
0.2
- fz () "
)4 1 1 | |
0.0 Z 5 4 3 2 1 0 1 2 3 4 5
X




The Z score

And on the cumulative distribution:

¢ ¢(2=PZ<2)
o 1-0(2)= P(Z>2)

Random variable can be
standardized so its mean is O, and
standard deviation=1 so:

7

19.1%|19.1%
15.0% 15.0%
0.1%
Standard
Deviaion: & -3 25 2 1.5 1 05 (0 05 +1 +15 2 +25 +3 MahBits
ZScore: 3 25 2 45 -1 05 0 +05 +1 +15 +2 +25 +3
CiNe. 0% 2.3% 15.9% 50% 84.1%  97.7% 99.9%
fZ(’)A (D(:I;)zx
|
area = O(x)
| 14
|
|
1
d 2 4
| /
|
I
L >
T

£ 2



The Z table

= P(z<0) =0.5 = ¢(0.5)

= P(2<0.44)=((0.44)=0.67
= p(z>0.44)=1-4(0.44 )= 1-0.67=0.33
= p(z<-0.44)=0(-0.44)

=-(0.67-0.5)+0.5=0.33

Number in the
table represents

P(Z<2)
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
00 | 5000 5040 5080 5120 5160 5199 5239 5219 5319 5359
01 5398 5438 5478 5517 5557 5596 5636 5675 5714 5753
02 | 5793 5832 5871 5910 5948 5987 6026 .6064 6103 6141
03 | 6179 6217 6255 6293 6331 6368 6406 6443 6480 6517
04 | 6554 6591 6628 6664 6700 6736 6772 .6808 6844 6879
' 1157 7190 1224
' .7486 1517 .7549
. 7% 783 1852
2 ' .8078 8106 8133
Number in the ' e e awo
table represents - 8577 8599 8621
' 8790 .8810 .8830
P(Z<2) - 8980 8997 9015
) 9147 9162 9977
o 2z 9292 9306  .9319
9418 .9429 9441
9525 .9535 .9545
z 0.05 0.06 0.07 w16 %25 %)
.9693 9699  .9706
0.0 5199 5239 5279 a6 we @
.9808 9812 9817
01 .5596 5636 5675 o st ses
.9884 .9887 .9890
02 5987 6026 6064 . G s
03 6368 6406 6443 %2 5%
.9949 9951 9952
04 | . -6664 6736 6772 6808 %2 .93 .96
9972 .9973 9974
05 | .6915 6950 6985 7019 7054 7088 J123 7157 sos 0 s
.9985 9986  .9986
06 | .7257 1291 7324 7357 7389 7422 J458 7486 g0 g0 sow
0.7 | .7580 1611 1642 .76753‘ “5]7%“ JJ:M . .ZLM L .77“93 x: g m
33 | 9995 9995 9995 9996 .9996 9996 .9996 .9996 9996 .9997
34 | 9997 9997 9997 9997 9997 9997 9997 9997 .9997 .9998
35 | .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 9998 .9998
36 | .9998 9998 9999 9999 9993 9999 9999 9999 9999 9999



A company manufactures Al foils with a mean thickness of 100pum and a standard
deviation of 10um. What is the approximate probability that a foil will be more than 120um

thick?
p(2>2)=1-¢(2) =
120 — 100 =1-0.977

10 2 = 0.023

= 2.3%

7 =

What is the probability a sample of 25 foils will have an average thickness of more than

95um? ) o 10 , ¢<:ﬁ—p):¢<95—2100)
T — — — Oz
Vi VB S
=1 - $(2.5)
=1-0.9338

= 0.0062



Central limit theorem (CLT)

The sum of n independent random variables xi,
each taken from a distribution with finite variance
o’ and Mean value g,

Then the sumy :

y

n

2 X
i=1

n

z:ui
i=1

Has an expectation value of:

E[y]

Has a variance of: V(y]

n
2.
i=1

When n=x, the random variable X becomes a
gaussian

In the case of repeated measurements:

All u, have the same value “u” and:

ElyJ=n u

(13 13

All o have the same value “o“ and:
VIyl=no2

And the averages are:

_Y
E[Y]—;

1 o
— Var (y)=

V[yl=Var (£)=
n n n

olyl=—+=
vn




Central limit theorem (CLT)

The sample mean will approximately be normally distributed for large sample sizes, regardless
of the distribution from which we are sampling.

Exp, muo=40, with N=1 Exp, muo=40, with N=10 Exp. muo=40, with N=100 Exp, muo=40, with N=400
N=1 N=10 N=100 — N=400
0.020 — scale=40 0i53s — scale=13 — scale=4 : — scale=2
0.10
0.175
0.030
0.150
0.015 0:08,
0.025
0.125
2 Py = =
g g 0.020 g 0.06 g
So.010 a8 & &0-100
0.015
0.04 0.075
0.005 0.010 0.050
0.02
0.005 0.025
0.000 - 0.000 —_ 0.00 0.000
-100 -50 0 50 100 150 200 250 0 100 0 20 40 60 80 100 0 20 40 60 80 100

Bonus exercise : DIY - & {5 &



A few words on Monte Garlo

Numerically generating “random” data sets,
usually on a computer

What we need for simulation?

1. Model(s)

2. Random number (but not too random)
3. Sampler

= Using random numbers? Make surzg
seed correctly...

How to generate an arbitrary PDF
from a flat distribution?

Numerous methods exist.
| will briefly review three:

e Simulate the physical process
® Inverse transform method
® Rejection method



Monte Carlo sampling by “physicsal processes”
Example: Poisson process example

The goal: Write a Poissonian sampler, using only flat random
number generator. Go into the “core” - simulate “decays”

= The probability is given as input T".

= Loop over time in some stamps.

= Draw a flat distributed random number,

e |[fitis greater than the given time constant do nothing.
e [fitis lighter than the given time constant count an event.

= Choose your units and scale carefully.



MGC sampling using Inverse Transformation
Example: generating an exponential distribution from flat

il
=—exp(—z/ . . . .
Plal=g el This method is efficient, fast, accurate
_x dZ _X/T' =
F(x)=] Zexp(~z/7)= | dye”’=1-exp(~x/T) But not always feasible...
0 0
1. If Y is a random number between 0O-1, we’ll set: : 1
Y=F(z)=1-¢e""
cdf
2. And solve for x: pdf
x=—1In(1-Y) at @RI
0 1 2 3 0 1 2 3 0 1 2 3
3. But since both Y and 1-Y are uniform we can also use.

x=—1nY

Now, if we put “flat Y” we will get exponential x with the correct coverage

lllustrations from https://programming.guide/generate-random-value-with-distribution.html



MG sampling using rejection method
Example: unified sampling from polar coordinates

Draw random numbers inside a circle with radius R

starting from flat distributions and the following
techniques:

1. Rejection method: draw random x and y in [-R,R]
Keep only points inside the circle.

2. Using variable transformation ( random r in [O,R] a
random © in [0,21m won’t work]

Incorrect: points cluster Correct: points are evenly

Another useful and powerful sampling method is MCMC around the center. Tpreadiet
(Markov chain Monte Carlo) - especially important in

bayesian inference when a lot of sampling is needed to

account for a wide hypothesis space.



Part 3:
Estimation




Data value(s) (random variables) {x1,x2,x3,...xn}
are drawn from some probability density
function f(x;0).

A model describes data with a mean u
= u is a fixed unknown parameter

We estimate the mean, by calculating the
average (“mean of the set”) of our data:

The PDF is characterized by parameter(s) 0
The estimator for 0, will provide an
estimate for the parameter 6.

The data values will be different each time.
The estimator will remain the same but the
estimate will change.

-~

x1

X2 — b

Estimator —— Estimate

xn

— 2711332
1= Tn

A different set of measurements will give us
a different average...etc...

FHf s



Estimators properties —

e Consistent

JhrriP ([6—6#>e€)=0 (for any €>0)

e None-biased
The actual value = expectation value of the estimate |

b=E|[0]-6 ﬁ
= If bias is found it can be corrected for, by tuning the estimator o A
= For a consistent estimator a bias will vanish as n=+~ E[G]
e Efficient

Minimum variance. An estimator is said to be efficient if its variance is at a
minimum value called “Minimum Variance Bound”

~ . - 2
Also exist: robustness, cimplicity... wad o) = E[(g —Hig | 9]) 14



N=10, mu=5

The likelihood function

-25.0

Probability of data given a parameter (model) -

-30.0

Data value(s) {x1,x2,x3,...xn} are drawn from some f(x;0):

In(L)

-325
n

= Their joint pdf will be: f(x;;0)f(x;0)...f(x ;0) H f(zi;0 ]

-375
1=1
-20.0

For example: 10 poisson distributed values around 5:

Fg.[958415548 5] e

P(5)= [[Poiss(x;5)=Poiss(9;5)-Poiss(5;5)-Poiss(8;5)-Poiss(4;5)...= 0.036:0.175:0.065:0.175... =1.52e-10

i=1

P(4)= HPoiss(xi;4)=Poiss(9;4)-Poiss(5;4)-Poiss(8;4)-Poiss(4;4)...=0.01 3:0.156-:0.029-0.195... =1.96e-11

i=1
10

P(6)= [ [Poiss(x;6)=1.3e-10

n

N -~
L(z;|6) = [ | f(z:;9) In L(z; | 6) Zln f(z:;0) ~InL(z; |) = = ) In f(x;;0) M| =0

1=1 Py 0 2l o=6



Maximum Likelihood Estimator

Maximum likelihood (ML)
estimator for 0

N
—InL(z; |0) = — Zln f(z;0)
i—1

-In(L)

The game plan:

1. Take N measurement of random variable x

2. Hypothesize a model e.g. P(z) = f - Pygna(x) + (1 — f) - Poer(x)
3.  Write the log Iikejlfihood

~InL(z|f)=—) WIn(Pz|f)
=1
4. Minimize -In(L) w.r.t. Your parameter (f) - analytically if possible. Or numerically
The most probable value of the likelihood is the maximum likelihood estimator

The spread around the minimum is usually the measure of the accuracy



Maximum Likelihood Estimator

e Maximum likelihood estimators are usually consistent

e Maximum likelihood estimators are usually biased, but it gets better as
N=infinity

e |n the asymptotic limit, the estimator is efficient.

V<9) = @ :> ”§:V<9> - @
62 10

e Maximum likelihood estimators are invariant under parameter

transformation

* This statement is based on a term called “Minimum Variant Bound” (or MVB). It says there
is a “best case estimator” which gives smallest RMS value when averaged over thousan2ds of
expereriments. . — (1 + %)
V(H) = d?InL
do?




What about the uncertainty?
4 options 2 2
= Option 1: In some cases, this can be calculated analytically a’lé[é} = E[é ] — (E[HD

= Option 2: Monte Carlo: Simulate “many” experiments with similar sample size, collect the
expectation values in an histogram, and estimate the variance.

Asymptotic normality - ML estimators, for large sample limit, the distribution will
be apx gaussian. >

Gentle practical points

e What values to use (“truth” or “expectation™)?
e Simulate all identical sample sizes (e.g. N=50) or do N=Poisson(50)?
e What happens when parameter is near its limit (i.e. positive only).



If we take a taylor series expansion
about the ML estimator

What about the uncertainty? (cont)
4 options

= Option 3: “Information inequality” or “Rao Cramer Frechet inequality” 5o :(_ lenLJ_l
(Holds not only for ML estimators). For efficient, unbiased estimators 06* )ya,

= Option 4: The graphical method: If we take a taylor series expansion about the ML estimator 6

A dlnL ) 1 82InL -\ 2 3
InL(9) =1nL(8) 0 9:9(0_9)+§ s |, (0=0) +. z
N J
S/ =l 11" o\ 2
maz o (9_0) .
(c,) e ~In Liae + 51
InL(6 + &, —lanaX—l %6 =InL_ .« —l
0 2 ~A 2 () 2
99 ) —InL,4z
N . 1 (20,
1nL(0:|:2(fé) =10 Lo — 5 ( f)z) = In Lpay() — 2
o

A0+ and A6+ are not necessarily equal. With good statistics this will become parabola and they will equal.



For example...

Not quite parabolic In L since finite sample size
(n =50).

1.062

=)
I

A7 = 0.137
A7, = 0.165

oz ~ AT_~ AT ~0.15

-52.5

log L(1)

-563.5

T T
T-At. T t+Af,
log L, .
Gk~ -
0.8 1.2 1.4

1.6



Unbinned extended likelihood

So far we looked at “shapes” only: y (6) = f[ f (x,.;é)
1=1

We can include also the expected number of events by including a Poisson term

L(N; 5) = Poiss(n\N)Zf[lf(mi 5) = NT:;N f{j”(wz

i) = S 1V (e

9)
Let’s log it:

In(L)=-N-Inn)+>" InN+>" In f(w,—] 0) — —N+n-InN+>" In f(:z:l_] 0)

To find the minimum of -In(L):

Oln L n Oln L Oln L
_ 1M _ _ _ —0, —0
ON N0 —n=N 90, 90,




Unbinned extended likelihood

Same idea, only binned...
e Switching from n events, to N bins so:
n=ntn tn t..+n

e The number of expected events in each
bin will be integrated for the data, and for
the models

0.06

0.05 1

0.04 1

0.03 1

0.02 1

0.01 1

0.00 1

10

- 0.8

- 0.6

- 0.4

- 0.2

0.0

10

-0.8

-0.6

-0.4

0.2

00



Some other useful extensions to the likelihood

Model combination flz:|8)= > 6ifiz) where Y, 6i=1 e.g
components components
L = L(x; | N, pis, O, iy, O, Ots, 0, 0, I') = Poiss(n | N) - H(asgafu.s(/ ,0s) + apgaus(ps, op) + oy exp (T))
i=1

~

Additional data sets
For example include auxiliary calibration data, constraining some of the used parameters. e.g:

n
Poiss(n|N) - H faata (s | 8,6%)
i=1

L= L(wu'x_] I ‘-’V~ o_)A'rcals 0(:_(11)0_‘) -

Thenl!
Poiss(neg | Neat) - H Jeal (33]' Bcal, 9_*)]

j=1

(&

\&

Parameter constraints
Add distributions with (e.g) gaussian constraint to the likelihood function. E.g:

gaus(s | Pmodel, O

JM'X & iviatch




Bad news! More parameters means...

No analytical solution

For each parameter we set the derivative to zero. The equations
become more and more complex.

Chances to solve analytically are low.
Solution: program it.

However: Minimizers only partly useful.

Larger uncertainties
The likelihood curve will become wider and wider

(don’t believe me? Simulate it and check)



L (:\E’H wj} sza sy Op, 97 Hau:m econstraj .« .
Y

~

Data points parameters
(list of (s1,52))

Use the data-set(s) and find the minimum of this

 J
WHY

AM | DOING
THIS?

4 05

)

(Mul-

W)



13 ”

u
Parameter

of interest*

profile likelihood

Nuisance parameters

* To be more precise, the parameter of interest is not Nsignal’ but rather o... but we will discuss this
issue later




Profile likelihood

u - Parameter of interest
0 - Nuisance parameter
X - data

Value of nuisance
parameter that
maximizes L for a

. specific u
uﬂ)

Maximized
value of L.
(unconditional)




Profiling in action

Param of interest = val2

Param of.interest = val1

2

2

15

0.5

ce parameter O

nce parameter O,
In ¢ units around nominal

Nominal value

e = (9192) Minimum for a specific u
O =(0,0) Nominal

Param of interest = val2

)




Profilina in live action

LL curve with no
profiling

LL curve with
profiling

2 25 3 35 4 45
Xs[1e-45¢m2]

Param of interest

= (0102) Minimum for a specific u

W
O =(0,0) Nominal

[ Xs=0.00e+00 |

Nuisance parameters



Profile likelihood
Wilks theorem

The distribution of q evaluated at ¢ approaches a

chi-square pdf asymptotically
qu = —2In A\(Z | p)

flqu(p)) = f(=2InA(p| )

u - Parameter of interest
0 - Nuisance parameter

L(:T: ‘ u,é)

NCAES L(a‘: ’ ﬂ,é)

—2log A(6) ~ x;,

2log A(0)|6)

(-2
—_—

—
—2log A(0)

What does it mean?
e We pick a model
e We generate MC experiments using this model
e For each experiment we check the value of the
test statistics under the same assumption it was
generated with, and add this value to a histogram
e We will get a chi2 distribution

Why is this important
e For our “real” measurement, we can now

estimate g for a given model.
e From the value of g we can estimate
probabilities assuming that the model we

tested is correct
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Gomic relief

https://xkcd.com/1132/

DlD‘IT{SLNJ’USFB@LODE’?
(ITS NIGHT, 50 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

( THEN, TROWLS TWO DICE. IF THEY

BOTH COME UP SiIX, IT UES TO US.
OTHERWISE, IT TELLS THE TRUH.

LETS TRY.
DETECTOR! HAS THE
SN GONE Novh? (

) /IRZL,

YES.
3 "

FREQUENTIST STATISTICIAN: BAYESIAN STATSTIOAN:

THE PROGABILITY OF THIS RESULT

HAPPENING BY CHANCE 15 30027 BET YOU $50
GNCE p<0.05, T. CONCLUDE. IT HASNT.
THAT TFE SUN HAS EXPLODED. )

Taal




Part 4-
Inference



Significant intervals

Experiment = Random variable =+ Estimator » Result

How confident are we about this result?

theta to our theta estimation?

|”

How close is the “rea

e J-a is called confidence level (0-1 or 0-100%)
e [a,b]is the confidence interval

the probability that the “true” value of parameter 6 is in the interval [a,b] is greater
than 1-a m=+ oy = [m_0m7m+am]
f‘:l:O'p — [IA‘—OT,f‘—f—OT}

T to, = |[f — oM+ 0]

For a given a i we can choose different regions



Bayesian credible intervals

L (x|pe) p(pe)
p(x)

p(uelx) =

A Bayesian interval [M1, u2] with confidence level o is

H2
/ Al dpe =
n

1 JET

—- 68.2% Credible Interval

Easily obtained from the posterior pdf

- —- 95.4% Credible Interval




Avg = 100.077

Erequentist confidence intervals -
What does it mean?

Experiment = Random variable » Estimator » Result

m=+ o, = [ — op, M+ o]

f‘:l:O'[*Z> [f‘—dr,f‘—i-d‘p}

7A':|:0'7-:>[’7A'—0'7.,ﬁ’1,—|—0',,.] . 5 2

What does it mean? -
Repeating our experiment many times.... ————
85 90 95 10(; 165 1;0
68% of the resulting T* o intervals include the true value t of the TR
parameter

100 simulated experiments with

X In 68% of the experiments the true value is the T+ ¢ range 5% confidence intervals.

x There is 68% probability that the true value is in the T+ o range



Erequentist Gonfidence interval

A confidence interval [p1, u2] is a member of a set, such that the set has the property that Plove i, )=
= Ensemble of experiments with a fixed unknown u

= 11 and u2 depends on the measured x

=Intervals will contain the unknown true u in fraction « of experiments

= If it holds for every allowed u the intervals cover u with a confidence (“correct coverage”)

= If for any value of u for which P(u € [ul,u2]) < a then the intervals undercover this u

= If for any value of u for which P(u € [ul,u2]) > « then the intervals overcover this u

= Conservative intervals - only overcover. The price : loss of power in rejecting false hypothesis

e Frequentist: [n1, p2] contains the fixed, unknown pt in a fraction a of hypothetical experiments
e Bayesian: the degree of belief that ptis in [p1, p2]is a
e These views can correspond, but they don't have to



Neyman construction (of “Neyman Belt")

Method of constructing confidence intervals with the desired level of coverage

6 (model)

P(x10)

h0=oﬂ: . .

Pz <z|0)+ Pz >z,]0) =«




Neyman construction (of “Neyman Belt")

Method of constructing confidence intervals with the desired level of coverage

P(xI0)

A
<
Il
‘ 6 (model)
(=
()

X
- -zt
x

1 2 0 ° °
0 1 2 3 4 5 6 7

X (measured)

Pz <z|0)+ Pz >z,]0) =«



Neyman construction (of “Neyman Belt")

Method of constructing confidence intervals with the desired level of coverage

P(x10)

A
Q::
I
N
‘ 6 (model)
N

[ J [ ]
! 2 1 o o
0 ° °
0 1 2 3 4 5 6 7

X (measured)

Pz <z|0)+ Pz >z,]0) =«



Neyman construction (of “‘Neyman Belt”)

Method of constructing confidence intervals with the desired level of coverage

S

)
] ‘model)

W

N

0 1 2 3 4 2 : i

X (measured) I
><O



Example for Neyman construction

Constructing a 90% two sided interval for a normal gaussian distributed random variable:

= 0=1-0.9=0.1. We’ll take 0.05 from each side. 6

= For u=0 the relevant PDF is normal:

2

flosm) = e tE

e X2=Z_0.95 = scipy.stats.norm.ppf(.95)= 1.64

j (model)
w

o XI1=Z_0.05=-164

2 L
= For u=1the relevant PDF shifts by 1. 1 © L
) = L2 (=)
X1=-0.64, X2=2.64 F@it) = e

0o-—@ @

X (measured)

etc...




Example for Neyman construction

Constructing a 90% two sided interval for a normal gaussian distributed random variable with
know width, and unknown mean >0 : 6

= 0=1-0.9=0.1. We’ll take 0.05 from each side. 5

= For u=0 the relevant PDF is normal: f(z;#) = L i)

J (model)

e X2(Z=0.95) = scipy.stats.norm.ppf(.95)= 1.64
e X1(Z=0.05)=-1.64 g

= For u=1the relevant PDF shifts by 1:
f{’v'u) =

X1=-0.64, X2=2.64

X (measured)

etc...



Example for Neyman construction

Constructing a 90% upper limit interval for a normal gaussian distributed random variable:

= =1-0.9=0.1. We’ll take 0.1 from each side. °

5
flaw) = e @
e XI1(Z=0.) = scipy.stats.norm.ppf(1)=-1.28

= For u=0 the relevant PDF is normal:

p (model)

= For u=1the relevant PDF shifts by 1: 2

X1=-0.28, N m :

etc... =

X (measured)



Neyman construction: Try it yourself

Construct Neyman belt for poisson with constant background of Nb=3

50 s
14
13 o 13
12
— 12
11 ]
10 11
3 210
(] 9 = 9
[ ©
S 8 &
s 8
il
56 - - ¥
n s |- & 6
L a5l
4
- —
3
— 3
2 —
2
1
0 1 -
0:1. 2 3.45 6:7:8 9 101132131415 0

MeacnEdn 012345678 9101112131415
e Measured n



e If more than 3 sigma: Discovery!
e [f between O and 3 sigma: Limit!
e |[flessthan O: Set it to O!

For u=2= X1=2-1.28 , x2=2+1.64

H (model)

X (measured)



Feldman-CGousins
Likelihood ratio ordering principle

Based on the likelihood ratio: P(z|p)
P(x|ptpest)
u,.., is the (physically allowed) value that maximizes p(xIp) for that specific x .

For fixed |, add values of x to the interval from higher to lower R until the desired probability
content is realized.

Bl 1/V/2m, >0
(#lpbest) = exp(—z2/2)/V2x, z < 0.
For an only positive gaussian gaussian' We then compute R in analogy to Eq. 4.1, using Eqgs. 3.1 and 4.2:
P(aln) _ f exp(—(x - p)?/2), 220
~ —_ —_ 2 T eee—
if x>0 thenu=x= R = w B(z) P(|ptpest) exp(zp — p*/2), z<0.
If x<O then u=0= o (@22

e—(2)2/2



Type I and Type 1l exrrors

Type | Type II
Reject the null when it is actually true/ Fail to reject the null when it is wrong/
The probability for this is the “significance level” If the probability of this to happen is beta,
(" P-Value”, “alpha”). Then “1-beta” is called “the power”

We can choose it to be as small as we wish

HO is True HO is False

Don’t reject HO Type Il error 8

Reject HO Type | error a




Significance and power

e Significance - The probability to reject H when it is true
e Confidence level = (1-a)* 100%
e Typeland Type Il are related - when one increase, the other decrease

Neyman-Pearson Lemma - The likelihood-ratio test P(z|H,)
statistics is the most powerful test for a given significance P(z|Hy) o
level (alpha) . Any other test will have less power

Hypothesis Alternative / Null

The power (1-
The Significance power (1)

—

Acceit Re'|ect



tcut
Accept HO . . Reject HO

Alternative / Null

Hypothesis g(tiH1)

g(tiHO)

The power

T

Acceptance region Critical region






e P-value = Probability that a test statistic will take on a
value that is at least as extreme as the observed value
when the null hypothesis HO is true

= If P-value > a, fail to reject HO at significance level q;

= If P-value < a, reject HO at significance level a.

e Equivalently use significance, Z, defined as equivalent
number of sigmas for a Gaussian fluctuation in one
direction:

Z=2"'(1-p)



Asymptotic formulae for likelihood-based tests of new physics

Glen Cowan!, Kyle Cranmer?, Eilam Gross®, Ofer Vitells®

! Physics Department, Royal Holloway, University of London, Egham, TW20 0EX, U.K.
2 Physics Department, New York University, New York, NY 10003, U.S.A.
3 Weizmann Institute of Science, Rehovot 76100, Israel
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PRL 100, 021303 (2008) PHYSICAL REVIEW LETTERS

First Results from the XENON10 Dark Matter Experiment
at the Gran Sasso National Laboratory

J. Angle,"? E. Aprile.>* E. Ameodo.* L. Baudis.”> A. Bernstein,® A. Bolozdynya.® P. Brusov.® L.C..
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“However, the uncertainty of the estimated number of leakage events for each energy bin in the
analysis of the WIMP search data is currently limited by available calibration statistics. Based on the

analysis of multiple scatter events, no neutron induced recoil event is expected in the single scatter
WIMP-search data set. To set conservative limits on WIMP-nucleon spin-independent cross section, ye
consider all ten observed events, with no background subtraction.




WHAT DO WE LEARN FROM A TPC EVENT?

lllustrated by XENON100 2011/2012 data set

225 Live days
® s1,s2:

- Energy scale

- Discrimination: ER vs. Nr (s1/s2)

e \ertex reconstruction

- Fiducialization

- Single vs. Multiple scatters

e Waveforms

e Event epoch time

Slow control (detector stability)

Phys. Rev.

(2012)
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THE LIKELIHOOD FUN CTION

Extended unbinned L

( Poisson | x | Model Jx Ancillary

term term term

N
Zup = Poiss(N|Ns + Np) I_INf N, :]I:bfb( )
i=1 b fom e S
fo-—m o m—— ooy I e.g. '
Ng 6.6 ! _ = l e N
S ) ! E fs (x|65, 99) ] t Gaus (NLlN{),GJ) !
H {
| - ' i ' ~
h )} - H i
| N, (65, 0,) | £ (X0, O) | i Gaus (9 |9"’9> !

' Ngata

e Long list of observables x: S1, 52, (R,z,0), t
» Long list of parameters: 6.,6,, 6,
Some are correlated, some are not...
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THE LIKEL

Extended unbinned L

Poisson
term

«< | Model

term

.

HOOD FUNCTION

Ancillary
ferm

Calib

term

- Long list of observables x: S,, S;, (R,z,0), t

- Long list of parameters: 6,6,, 6,

Three choices:
1. lgnore -

That’s easy to implement

2. Binned model -

C:CIXCIIXL:III

Bins in discrimination space (“bands”)
Spatial bins (r,z,q)

Temporal bins (E variations, background conditions, “runs”)

3. Unbinned Model

Higher dimensions for f_, f,
Add nuisance parameters

150



THE LIKELIHOOD ¥ UNCTION

Extended unbinned £

Poisson | x | Model Ancillary
term term term

Some (hopefully) good reasons to take it slowly:

0 Limited knowledge — risk of under/over coverage
o Limited calibration
o Lack of model

o Always risk of mis-modeling
[INot needed
o The additional information / resolution is not needed

[1Save on resources

o Modeling and minimizing. Asymptoticness (checks or bypass)

Required cpus, diskspace, people, nerves, sanity

5 e overof e uardio

Wil
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HOW MANY BINS TO USE?

| Sensitivity vs. Nbands, various Calib sizes (50 GeV, run 10) |

~ 2 il '[ Line Style = # of bck calib events (1.5e4) _
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XENON’S 1°7 LIKELIHOOD FUNCTION

Parameter of interest:
Ns — total number of signal events
Nuisance parameters:
Nb — background events
Ssi, Sbi — distribution along bands of sig/bck
tLeff — deviation of Leff from median

Poisson on data, per

K
L = H Poiss(n? |[eZ N + €iNb) band.

7

ﬁ €I N, f5(S1;) + €l Ny fo(S1;) Distribution of events in
x : <
S el N, + €] N each band

K K
J 7]

X exp(—(t —tobs)*/2) } Leff penalty




\jﬁﬁﬁm - PLR RESULTS-

L

N-YEAR 2018 ANALYSIS —

Introducing...

PDFs in higher dimensions (s1,s2,r). No bands in s2.

Larger volume used

4 independent background models constraint by calibration and simulation
More nuisance parameters

More complete interaction model

More sophisticated background model with some a-priori fits

M FR M Surface ® Neutron B AC = WIMP R[cm]

Safeguard to account for some 1

154




)
O SOME THOUGHT ON SIGNAL MODEL

e Signal modelsets: f_ and n (o) and (g )
e Don'’t forget our parameter of interestis o (notn)
® Energy scale: pellllkev
e Nuisance parameters in astrophysical model, interaction model, detector response
e No calibration sample available
(calibration data can be used to constraint parameters) ~

e Need to artificially incorporate spatial and temporal detector \_~  instabilities, .

v u v /
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\/S/OME“ THOUGHT ON BACKGROUND MODEL

~

Background model sets: f,_(e ) and sometimes N,

Several components of background: Fractions can be “frozen” or be nuisance
Shape and magnitudes modeling

Calibration samples may exist — statistic decreases with #variables

Is our background model accurate “enough”?

Gaussian ER Model None Gaussian ER Model ER Model

E —ER — Surface ~— neutron
s
107 — cpuns —AcC — WIMP
Total BG (1.31) © Data (13 1)

=]
2
Ty

= Total BG (0.9t) @ Data (0.9 1)

5202 30 [ ) B S )
stipel Stipe) St o]

Total background NR+ER

Events / (bin width x t)

o0 T
(cS2, - M)/ O

sl
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THE CURSE OF BACKGROUND MISMODELLING
THE PROBLEM

® Too many parameters

[
o
LU )

® Hidden parameters

Events/(0.25)

S
o

® Partial underlying model

® ...Mistakes...

Might lead to enhanced false discovery rate or overly constrained limits

157



THE CURSE OF BACKGROUND MISMODELLING
THE PROBLEM
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THE CURSE OF BACKGROUND MISMODELLING
THE PROBLEM

Arxiv:1610.02643
e Use the benchmark model
e Do not add extra nuisance parameters
fo(x) = (1 —€)fp(x) + efs(x)
N.fo(x;) + Ny(1 —¢ x;) + Nyefo(x;
Loverall — POiSS(NlNS +Nb)l_[ sfs‘( 1) b( )fb( 1) b fs( 1) x Lcal(g)
N + N,
z
Qi 2 3 4
Lea(®) = | [(1= &) oG + i) g E
095 / Lo N -
F (b)
e Works for limits and discoveries 0'9? / | ool _
0.85—f : b a
e Safeguards background components that are based on calibration 08_7 R T S ??_fb; N S T
; e
e We found out that a similar technique used for cross checks in the LHC, T L
“spurious signal” o T
0'6:7“[.“1“‘i .“‘u; 1

i 1 PR P i
0 2 4 6 8 10 12 14 16 18 20




WHERE IT HURTS,,

EXAMPLE 1:"THE CURSE OF MISMODELLING”

The “safeguard” can provide some protection for models constructed based on calibration samples.

Nuisance parameters can be added, but
— Require some model assumption

- Complicates analysis — heavier, slower

It is not enough ~
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WHERE IT HURTS,,

EXAMPLE 2:“THE CURSE OF THE UN-MODELLED”

e |nclude nuisance parameters without an underlying model

e Non physical regions

e Non symmetric nuisance uncertainties

10°
Energy [keVnr]

i ;ixx‘nl T S S
1 2345 10 20 100 161

Phys. Rev. C 84, 045805 (2011) S wdna
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WHERE IT HURTS,,

“EXAMPLE 3:“THE BLESSING OF ASYMPTOTICNESS”

(Or “we @@ wilks & arxiv1007.1727") Low by
QG={52IH)\(G) (:T<U Ds = L f(QGIHa)dQU-

g >0 obs

Ncalib=151 Ncalib=15128 Ncalib=151 280

bck0.01run_10_mass50_b10_1_Ns0._3.42_.root \ h1 | bckirun_10_mass50_b10_1_Ns0._2.20_.root ‘ h1 | [ bck10run_10_ _b10_1_Ns0._2.19_.root h1
Entries 1000 Entries 1000 Entries 10
Do i i M s | it il b | . Mean 0.04252 w08 T gy g Mean 0.4181 e i s e e i i | . Mean 0.47
RMS  02714| § .- : 8
05 =

RMS 1.024 © E RMS 1.0
—= oos =

chi2 CDF

Simulation (N=1001)
0.5*chi2_cdf(x,1)
Difference x10

chi2 CDF
Simulation (N=1001)
0.5*chi2_cdf(x,1)
Difference x10

chi2 CDF
Simulation (N=1001)

0.5*chi2_cdf(x,1)
Difference x10

a : M\m‘wnhu Il

f W 3 S O T o
T T e e I S T TP i

Need to verify asymptoticness and run MC if broken 162

v u Y /
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WHERE IT HURTS,,

“EXAMPLE 4:“THE CURSE OF MULTIPLE DIMENSIONS”

Generating multidimensional (s1,s2,r,z...) pdf maps for “many” nuisance parameters variations

e Algorithm:
Prepare a model bank ahead of time
Or build the necessary model during minimization

(Possibly with smart book keeping and archiving)

e Nuisance parallleter resolution rrfliaxd‘z (0; Let, Vescs Noy €5 €5)
A(a_) - a Xe
max.Z (0, Leff, Vescs Nb, €s, €p)

k4 (0, Ccff’ Vesc, Nb, €5, 6Ab)

How large a step in modeling

Interpolate? ® 2 (6, Loty s Ny,

e \erifying asymptoticness or doing mc instead becomes painful

v u Y /

163
e Also: complicated codes



\ ~
- WHERE IT HURTS,

EXAMPLE 5:“THE CURSE OF HANDWAVING”

WIMP model
[KeV]

Correct S1 according to LCE(x,y,z): scale up or
down the total PE measured to get number of
PE we should have gotten with a uniform light
collection efficiency

’ apply accegtances,
Data points in ¢S, Likelihood i fs(cS1) pdf
function

Loop on all events in each band. For each event, use

its cS1 to check how likely it is to come from the signal
pdf, or background pdf.

for a given wimp mass, calculate differential
rate in KeV, Translate to PE using average
light yield. Poisson smear, Gauss smearr,

N’ 164
Problem: cS1 is not physical. Low PE cut, Poisson smearing.should be done on s1!

v \J — /
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WHERE IT HURTS...

EXAMPLE 6:“THE CURSE OF DIVERSITY”

e.q. Over coverage: where

* Power constraint
* Cls (Roughly 20%CL[195%CL)

e Ce la vie

165



WHERE IT HURTS...

EXAMPLE 7:“THE CURSE OF PAGE LIMIT”

Many details to the models, inference method...

Information in papers is limited. Very often summarized to: “...as was done in
[xx].”

Would be nice to see more detailed likelihood functions... _~ -

CUORE

—— — - CUORE-0

--------- Cuoricino

CUORE + CUORE-0 + Cuoricino

732501

Would be nice to see more likelihood curves... 16

Many consistency checks, verifications to be made . usually n
acknowledged.

NLL
S

Follow up papers become more popular, but

e
—
e
apat seye 7T Il |

T 005 0 005 0T 015 02 05 03
Decay rate (102 yr-1)
...cannot make everyone happy....

FIG. 4. Profile negative-log-likelihood curves for CUORE,
CUORE-0, Cuoricino, and their combination.
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7 GRAPHICAL SUMMARY

The Hitchhiker's Guide to ti Oh Deep Statistical
inference, we want you to

tell us the answer

5 7 T
The answer to what?

- ““

Our DM limit in a
similar method to

[17].

Back then....

7'5dP<:=I ion
tudent
siuaents Deep Monte Carlo, do you

lafer... have the answer?



