Statistics underground

PART I

Fortuna - Roman goddess of luck, chance and statistical inference

(; My career

What I would like to do here

There are excellent books/lectures/blogs/sites on everything we will discuss, and more.

- R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences, Wiley, 1989
 - G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998 Also online lectures and talks https://www.pp.rhul.ac.uk/~cowan/
 - G.D'Agostini, Bayesian Reasoning in Data Analysis: A Critical Introduction, World Scientific Publishing 2003.
 - PDG, Statistics summary: <u>https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf</u>
 - Gelman et al: Bayesian data analysis: <u>http://www.stat.columbia.edu/~gelman/book/</u>
 - https://telescoper.wordpress.com

What I would like to do here

There are excellent books/lectures/blogs/sites on everything we will discuss, and more.

With our limited time together, I'd like to:

- Introduce basics of statistical analysis and survey some of the ways we use statistical analysis in UG physics
- Review basic and advanced concepts in probability, decision making and inference
- Zoom into some delicate points relevant to us, underground people
- Introduce tools and techniques that helped me in understanding and doing statistics

In the end of our sessions I hope you will see the beauty and importance of statistics, and be encouraged to further investigate, simulate, read and do

Work Plan

- Intro: Statistical bloopers
- Part 1: Probability:
- Part 2: Distributions and sampling
- Part 3: Estimation
- Part 4: Inference

Introduction: Statistical bloopers

The case of the wavy hand But what does it mean?

The case of the wavy hand But what does it mean?

Hamlin et al., Am J Dent. 2009 Mar;22 Spec No A:16A-20A.

Schiff er al., Am J Dent. 2009 Mar;22 Spec No A:8A-15A.

The case of the wavy hand But what does it mean?

Brown = 1%,

Red = 2%,

Gold = 5%,

Silver = 10 %

None = 20%

www.build-electronic-circuits.com

What does it mean ?

For my birthday I got a box with 1000 resistors. 100Ω each, with 5% tolerance

Q: How is the tolerance defined? 1 sigma? 3 sigma?

A: "only" 95-105 ohm resistance. By construction.

Q: What is the probability distribution of the resistivity?

A: Yes

A: ahhhhh?

Is the treatment effective?

100 patient tested, 50 young and 50 less young

Researcher A looked at the results and concluded that...

		Recovered	Not recovered	Total	% recovery	
Young patients:	Treated	19	21	40	47.5 %	
roung patients.	Not treater.	5	5	10 🤇	50 %	
		24	26	50		
	-					
		Recovered	Not recovered	Total	% recovery	
Old patients:	Treated	Recovered	Not recovered 9	Total 10	% recovery	
Old patients:	Treated Not treater.	Recovered 1 11	Not recovered 9 29	Total 10 40	% recovery 10 % 27.5 %	

Is the treatment effective?

100 patient tested, 50 young and 50 less young

Researcher B looked at the overall results and concluded that...

	Recovered	Not recovered	Total	% recovery
Treated	20	30	50	40%
Not treated	16	34	50	32%
	36	64	100	

Is the treatment effective?

Researcher B concluded: "Treatment is not effective"		Recovered	Not recovered	Total	% recovery
	Treated	20	30	50	40%
	Not treated	16	34	50	32%
		36	64	100	

Case fatality rates in China & ItalyOverallBy age

Italy > China

China > Italy

https://arxiv.org/pdf/2005.07180.pdf

The case of the illusive variable Simpson's Paradox

Simpson's paradox Graphical illustration

- Slope = Fraction of successes
- Steeper vector = more success
- The orange lines have a higher success rate than the blue ones
- However...The sum of the orange lines have a lower success rate than the blue on.

Number of trials

The case of the illusive variable Simpson's Paradox

Drawing two different conclusions from the same data, depending on how you divide things up

We don't know what we don't know...

https://www.youtube.com/watch?v=t-Ci3FosqZs&ab_channel=Dr.TreforBazett

The case of the bad fit **Good news! COVID-19 is less contagious at higher** temperatures... Peter Laursen

Fitting a 36 degree polynomial rather than a straight line, it seems indeed that contagiousness decreases somewhat with temperature, but only until 23.5 °C, after which it explodes!

In other words, your data show that we must take immediate action to avoid global warming!

Read 3 replies

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3551767

https://arxiv.org/abs/1011.5004

The case of the clerical error

Observational Constraints on the Ultra-high Energy cosmic Neutrino Flux from the Second Flight of the ANITA Experiment

March 2010: ". In a blind analysis, we find 2 surviving events on a background, mostly anthropogenic, of 0.97±0.42 events"

Nov 2010 Erratum: " . After publication, we subsequently determined that due to a clerical error <u>one of the two</u> surviving events, Event 8381355, <u>was actually one of the</u> <u>inserted pulser events.</u> The fact that this event survived its subsequent scrutiny we consider as a demonstration that the blinding procedure was truly valid"

The case of the mysterious signal High statistics search for ultrahigh energy γ -ray emission from Cygnus X-3 and Hercules X-1

Figure 1: Published results from ground-based experiments indicating evidence for gammaray emission from Cygnus X-3 during the period 1975-1990. The circles indicate results from atmospheric Cherenkov telescopes, the squares show data taken by air shower arrays, and the triangle indicates the result from the Fly's Eye experiment. The dashed curve is an approximate power law fit to the data with a slope of -1.1. Not shown in this figure are several upper limits to the flux of gamma-rays from Cygnus X-3 during this same epoch. The two points at extremely high energy (5×10^6 TeV) have been slightly displaced from each other for clarity.

Figure 12: Flux limits reported between 1990 and 1995 on the steady emission of particles from Cygnus X-3. The squares (5) represent the results of this work. Open squares indicate limits on the emission of any neutral particle that creates air showers. Filled squares indicate limits on the emission of gamma-rays. The circles (1-4) represent results from other experiments: 1. Tibet [92], 2. HEGRA [95], 3. CYGNUS [93], and 4. EAS-TOP [94]. The dashed curve is the approximate power law fit to early results (reproduced from Figure 1).

Using data taken with the CASA-MIA detector over a five year period (1990-1995), we find no evidence for steady emission from either source at energies above 115 TeV. The derived upper limits on such emission are more than two orders of magnitude lower than earlier claimed detections

https://arxiv.org/abs/astro-ph/9611117

Chicago Air Shower Array (CASA) + Michigan Muon Array (MIA), 1992-1999

The case of the statistical fluctuation 750 GeV diphoton excess

A deviation from the Standard Model background-only hypothesis corresponding to 3.4 standard deviations is observed in the 2015 data for a resonance mass hypothesis of 730 GeV. https://inspirehep.net/literature/1480039 No significant excess at such mass over the background expectation is observed in the 2016

The case of the illusive background **Primordial gravitational waves**

Top story

Primordial gravitational wave discovery heralds 'whole new era' in physics

17 Mar 2014: Gravitational waves could help unite general relativity and guantum mechanics to reveal a 'theory of everything' 1675 comments

Most recent

Gravitational waves turn to dust after claims of flawed analysis

4 Jun 2014: Astronomers who thought they had detected echoes of the big bang may have only seen the effects of space dust E 160 comments

https://arxiv.org/abs/2110.00483

The case of the mysterious plot Analyses of 123 Peripheral Human Immune Cell Subsets: Defining Differences with Age and between Healthy Donors and Cancer Patients not Detected in Analysis of Standard Immune Cell Types

https://journals.sagepub.com/doi/pdf/10.5772/62322

Part 1 memes conclusions

My top 10 (Paranoid) advices for doing statistics

- \Rightarrow All models are wrong, but some are useful.
- ⇒ Always read the fine prints (in papers...in codes....in manuals...).
- \Rightarrow Visualize the numbers. Be creative.
- \Rightarrow Black boxes are scary.
- ⇒ Try it yourself Best way to understand is to do it!
- \Rightarrow Comment everything (not just for other users, also for the future you)
- ⇒ Test your code often on "simpler" and "diverse" scenarios. Do sanity checks
- \Rightarrow If your code compiles on the "first trial" beware!
- ⇒ Always wear sun screen

Part 1: Probability

What is probability?

Depends who you ask....

A Mathematician, two physicists and a politician walk into a bar....

The bartender asks them: "Can you tell me what probability is?"

The Mathematician says : "A Number between 0-1, assigned to objects in a sample space"

The Frequentis says: "Frequency of an outcome in a repeating experiment"

The Bayesian says: "Probability is a subjective term, representing our degree of belief in a hypothesis"

The politician says: "Definitely yes!! Probably not!!"

What is probability? The building blocks

Sample space Ω : The set of all the outcomes of a random experiment. An outcome is an element in the sample space $\omega \in \Omega$.

Event space S: A set whose elements $A \in S$ (called events) are subsets of Ω (i.e., $A \subseteq \Omega$ is a collection of possible outcomes of an experiment).

Probability measure P: A function P : F → R that maps objects in S to the interval [0, 1].

What is probability?

Let S denote a sample space with a probability measure P defined over it, such that probability of any event $A \subseteq S$ is given by P(A). Then, the probability measure obeys the following axioms:

Kolmogorov axioms: (1933)

Some set S... A,B are subsets of S.

- Non negativity: For all $A \subset S$, $P(A) \ge 0$
- Unitarity: P(S)=1
- Countable additivity:

If $A \cap B = 0 \Rightarrow P(A \cup B) = P(A) + P(B)$

We can also deduce that

We can also deduce that:

- P(A) = 1 P(A) (A is the complement of A)
- P(A U A) = 1
- P(∅)=0
- If $A \subset B$ then $P(A) \leq P(B)$
- P(A U B)=P (A) +P(B)-P(A∩B)

Roll two dice

<u>The event space:</u> S=Various combos of outcomes, e.g.:

What is L, the event that the sum of the dice is 7:: L={(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} P(L)=1/6

What is M, the event that the sum of the two dice is 6: M= $\{(1,5), (2,4), (3,3), (4,2), (5,1)\}$ P(M)=5/36

What is N ? N={(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)}

Graphical representation of sample space Ben & Jerry plan to meet for ice cream between noon and 1 but they are not sure of their arrival times

Probability Ben arrives same time or after Jerry = 0.5

Probability that Jerry arrives first and Ben arrives at most 15 minutes after Jerry= 7/32=0.21875. Probability that Jerry arrives first and Ben arrives at most 1 minutes after Jerry =0.0165

What is probability?

Relative frequency

The probability of the event is the proportion of times that the event would occur in a very large number of hypothetical repetitions of the random phenomenon.

Probabilities are associated only with o

$P(A)=\lim_{n\to\infty} -$	#outcome A in n measure
	n

Elements of s = possible outcomes of repeatable measurement

"Frequentist approach"

Subset A = event = corresponds to the occurrence of any of the outcomes in the subset

Subjective probability

The probability is a the "strength of believe" that it is correct.

Probabilities are associated with state of knowledge on parameters - given some prior

ties, how should they change provided

egree of belief that hypothesis A is true

("hypothesis space"). Mutually exclusive.

Subset A = set of one or more hypothesis

"Bayesian approach"

Conditional probability

$$P(A|B) = Probability of A given B = \frac{P(A \cap B)}{P(B)}$$

 $P(A \cap B)$ = intersection = Unconditional probability involving both events

P(A|B)= Conditional = Conditional probability of one event, given the other

P(B)= Marginal=Unconditional probability of a single event
P(A|B) = P(B|A)

Law of total probability

If:
$$A_1, \dots, A_n$$
 are disjoint
&& if: $A_1 \cup A_2 \cup \dots \cup A_k = S$
then: $P(B) = \sum_{i=1}^n P(B \cap A_i)$
(Conditional
probability)
 $P(B) = \sum_{i=1}^n P(B|A_i)P(A_i)$

Law of total probability

Example:

The "Look over there!!!" game ["acchi muite hoi" (あっち向いてホイ.])

How to play it:

- Two players face each other
- In the same time player B points his head up, down, left or right.
- If the directions are the same, player B wins the game. &
- If the directions are different they switch roles and do another round

https://mangaboat.com/manga/karakai-jouzu-no-takagi-san/ch-082/

What are my chances to win if I go first

Experiment:

play it!

A=event of winning the game

B=event of winning the game on the first round

B'=event of not winning the game on the first round

P(A) = probability of "me" winning the game=pHow can you verify this res

By the law of total probability: Solve for

NO, NO

https://mangaboat.com/manga/karakai-jouzu-no-takagi-san/ch-082/

Simulate: niti

How to code the lookaway game

- The provide the second state of the second s
 - ⇒ Loop until there is a win ⇒ Run the games 1000 times

and the probability of player winning the game is the fraction of times the

Independence

if P(A∩B)=P(A)P(B) subsets A and B are independent. \Rightarrow and $P(A|B|) = \frac{P(A) \cdot P(B)}{P(B)} = P(A)$ Independet events doesn't necessarily mean that A∩B = 0 :

- ⇒ L : Getting sum of 7: {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)} $P(L)=\frac{1}{2}$
- \Rightarrow M: Getting sum of 6: {(1,5),(2,4),(3,3),(4,2),(5,1)} P(M)=5/36
- \Rightarrow N: Getting four on first :{(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)} P(N)=%

Are L and N independent?

 $L \cap N = \{(4,3)\} = 1/36$ $P(L) \cdot P(N) = \frac{1}{6} * \frac{1}{6} = \frac{1}{36} \Rightarrow \text{Independent...}$

P(NIL)=if we know we got sum of 7, then the probability of getting 4 on first is ¹/₈, which is identical to the probability of getting 1:6 anyhow

Are M and N independent?

 $M \cap N={(4,2)} = 1/36$ P(M)*P(N) = 5/36*%=5/224 ⇒ not independent P(N|M) = if we know we got sum of 6, then the probability of getting 4 on first is %

Bayes' theorem

Using the conditional probability we can say

 $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$ $P(B | A) = \frac{P(A \cap B)}{P(A)} = \frac{P(B \cap A)}{P(A)}$ $P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B \cap A)}{P(B)} = \frac{P(B \mid A) \cdot P(A)}{P(B)}$ $P(A | B) = \frac{P(B|A) \cdot P(A)}{P(B)}$

Example: An antigen test I took came positive* What is the probability I am actually sick?

- D+ : I got the disease. I am sick !
- D-: I did not get the disease. I am healthy
- T+: The antigen test came poistive
- T : The antigen test came negative

P(D + | T +) =

 $P(T+|D+) \cdot P(D+)$ $\overline{P(T+)}$

P(D+)=0.001

P(T+|D+)=0.997

```
P(T+) = P(D+) \cdot P(T+|D+) + P(D-) \cdot P(T+|D-) = 0.001*0.538 + 0.999*0.003 = 0.005675
```

```
P(D+|T+) = 0.15 = 15\%
```

P(D+|T-) = ... = 0.05%

True negative	P(T-ID-)=99.7%="specificity"
False negative	P(T+ID-)=0.3%
True positive	P(T+ID+)=53.8% = "sensitivity"
False negative	P(T-ID+)=46.2%
Prevalence P(I	D+)=0.1%
0.1% of populati	on sick

For PCR tests: Specificity 99.7%,

Sensitivity 95.7%

*

Pressumably

Random variables

A Random Variable - takes on a specific value for each element of the set S

Random variables can be:

- Discrete / Continuous
- Single value / vector
- Finite / infinite sample space

E.g.:

dise the sum of the two dice e.g.: ${X=4}={(1,3),(2,2),(3,1)}$ is the event that the sum of the two Maigetso two values e.g. ${Y=3}={(1,3),(2,3),(3,3),(3,2),(3,1)}$ is the event that the

A Runction for hatrom, down wariak less also de mandiente variable. That is, if X is a random variable and

From Bayes theorem to Bayesian Statistics

We can use Bayes' theorem to assign probabilities to hypothesis (H), based on assumed knowledge (I), which can be updated when data (X) become available.

Probability of a hypothesis (H) given a data (x): $P(H \mid X) = rac{P(X \mid H) \cdot P(H)}{P(X)}$

P(X|H) = The likelihood - Assuming some model, what is the probability to get data?

P(H) = (actually P(H|I)) = Prior probability - before including the new data $<math>\Rightarrow$ Determination of the prior is subjective. Even a flat prior is informative.

P(H|X)= posterior probability - how the prior probability changed based on the new data

P(X)=(actually P(X|I)) = Normalization over all possible hypothesis. Estimated using the law of total probability = $\int P(X|H)P(H)dH$

What does this mean?

$$g=10.1\pm 0.4\,rac{m}{s^2}$$

$$P(H \mid X) = \frac{P(X \mid H) \cdot P(H)}{P(X)} \propto P(X \mid H) \cdot P(H)$$

Part 2: Distributions

PMF - Probability Mass Function

If the outcome of an experiment is discrete x_i:

 $P(x_i)$ is the probability mass function

240

If the outcome of an experiment is continuous x:

f(x) is the probability density function (PDF) $P(A) = P(x \in [x, x+dx]) = f(x) dx$

$$\int_{a}^{b} f(x) dx = P(a \le x \le b)$$

- \Rightarrow f(x) is nonnegative
- \Rightarrow PDFs are normalized $\int f(x)=1$
- \Rightarrow (x) is not a probability

Palmer Archipelago penguins...dataset

A great intro dataset for data exploration & visualization

https://github.com/allisonhorst/penguins

If the outcome of an experiment is continuous f(x) is the probability density function (PDF)

$$P(A)=P(x\in [x,x+dx])=f(x)dx$$

$$\int_a^b f(x) dx = P(a \leq x \leq b)$$

 \Rightarrow f(x) is nonnegative

⇒ PDFs are normalized

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

 \Rightarrow (x) is not a probability

If the outcome of an experiment is continuous x: f(x) is the probability density function (PDF)

$$P(A)=P(x\in [x,x+dx])=f(x)dx$$

$$\int_a^b f(x) dx = P(a \leq x \leq b)$$
 .

 \Rightarrow f(x) is nonnegative

 \Rightarrow PDFs are normalized

ormalized
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

 \Rightarrow (x) is not a probability

If the outcome of an experiment is continuous x: f(x) is the probability density function (PDF)

$$P(A)=P(x\in [x,x+dx])=f(x)dx$$

$$\int_a^b f(x) dx = P(a \leq x \leq b)$$

- \Rightarrow f(x) is non-negative
- \Rightarrow PDFs are normalized $\int_{-\infty}^{+\infty} f(x) dx = 1$
- \Rightarrow (x) is not a probability

CDF - Cumulative distribution function

$$F(b) = P(X \leq b) = \int_{\infty}^{b} f(X) dX$$

$$f(X) = \frac{dF(X)}{dX}$$

- Non-decreasing, i.e. $a \leq b \Rightarrow F(a) \leq F(b)$
- Cannot be less than 0, or more than 1
 0≤F(X)≤1

 $\lim_{X \to -\infty} F(X) = 0 \qquad \lim_{X \to \infty} F(X) = 1$

- $P(a \leq X \leq b) = F(b) F(a)$
- Complementary CDF (1-F(x))

The fun things we can with a (to a?) PDF

The fun things we can with a (to a?) PDF **Reduce it to a number**

Standard deviation:

Mean:

 σ =sqrt(V[x])

The fun things we can with a (to a?) PDF Confidence Interval

The fun things we can with a (to a?) PDF Lower limit

The fun things we can with a (to a?) PDF Upper limit

From data to PDF.

- Infinite sample size
- Zero bin width
- Normalized to 1

Normalizing, ah? Pay attention to what you use

∑X_i = 10000

number of observations in each bin

normalize such that bar heights sum to 1 number of observations divided by the bin width

J

normalize such that the total area of the histogram equals 1

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

$$\sum_{i=1}^N x_i = 1$$

Multivariate PDFs

Pln case there are several random variables (e.g. x and y):

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)dxdy=1 \qquad \qquad f(x,y)\geq 0 \qquad \qquad P(x,y\in A)=\iint^{A}f(x,y)dxdy$$

 $P(A \cap B) = P(x \text{ found in } [x,x+dx] \text{ and } y \text{ found in } [y,y+dy]) = f(x,y)dxdy$

If the variables are independent:

$$P(A \cap B) = P(A)P(B) \Rightarrow f(x,y) = f_x(x)f_y(y)$$

Multivariate PDFs - Marginalization

Marginalization:

Extracting information for some of the components

$$f_x(x) = \int f(x,y) dy$$

The expectation value e.g.

$$E[x] = \int \int xf(x,y) \, dx \, dy = \int xf_x(x) \, dx = \mu_x$$

Multivariate PDFs - Conditional

The probability that y equals Y, given that x=X.

$$P(y \mid x) = p(y = Y \mid x = X)$$
$$= \frac{P(x = X \text{ and } y = Y)}{P(x = X)} = \frac{joint}{m \arg inal} = \frac{f(x, y)}{f(x)}$$

• The probability is:

$$P(a \leq y \leq b \,|\, x = X) = \int_a^b f(y \,|\, x) dy$$

• Normalization still holds:

$$\int f(y\,|\,x) dy = 1$$

• If the variables are independent:

 $P(A \cap B) = P(A)P(B) \Rightarrow f(x,y)=f_x(x)f_y(y)$

Covariance & correlation

Covariance:

Correlation coefficient:

$$\operatorname{cov}[x, y] = E[xy] - \mu_x \mu_y = E[(x - \mu_x)(y - \mu_y)]$$

$$\rho_{xy} = \frac{\operatorname{cov}[x, y]}{\sigma_x \sigma_y}$$

If we have several random variables.... covariance matrix Correlation

$$V_{ij} = \operatorname{cov}[x_i, x_j] = \rho_{ij}\sigma_i\sigma_j$$

	$\begin{pmatrix} \sigma_1^2 \end{pmatrix}$	$\rho_{12}\sigma_1\sigma_2$		$\rho_{1n}\sigma_1\sigma_n$
	$ ho_{21}\sigma_2\sigma_1$	σ_2^2	•••	$\rho_{2n}\sigma_2\sigma_n$
V =	:		·	:
	$\left(\rho_{n1}\sigma_n\sigma_1 \right)$	$\rho_{n2}\sigma_n\sigma_2$		σ_n^2 ,

$$\rho_{ij} = \frac{\operatorname{cov}[x_i, x_j]}{\sigma_i \sigma_j}$$

$$= \begin{pmatrix} 1 & \rho_{12} & \dots & \rho_{1n} \\ \rho_{21} & 1 & \dots & \rho_{2n} \\ \vdots & & \ddots & \vdots \\ \rho_{n1} & \rho_{n2} & \dots & 1 \end{pmatrix}$$

ρ

Statistics underground

PART II

The INFN School on Underground Physics

The likelihood function Probability of data given the parameter

Data value(s) $\{x1,x2,x3,...xn\}$ are drawn from some $f(x;\theta)$:

⇒ Their joint pdf will be: $f(x_1; \theta) \cdot f(x_2; \theta) \dots \cdot f(x_n; \theta)$

For example: 10 poisson distributed values around 5:

E.g.
$$[9_{15} 8 4 1 5 5 4 8 5]$$

P(5)= $\prod_{i=1}^{10} \text{Poiss}(x_i;5) = \text{Poiss}(9;5) \cdot \text{Poiss}(5;5) \cdot \text{Poiss}(8;5) \cdot \text{Poiss}(4;5) \dots = 0.036 \cdot 0.175 \cdot 0.065 \cdot 0.175 \dots = 1.52e \cdot 10$
P(4)= $\prod_{i=1}^{10} \text{Poiss}(x_i;4) = \text{Poiss}(9;4) \cdot \text{Poiss}(5;4) \cdot \text{Poiss}(8;4) \cdot \text{Poiss}(4;4) \dots = 0.013 \cdot 0.156 \cdot 0.029 \cdot 0.195 \dots = 1.96e - 11$
P(6)= $\prod_{i=1}^{10} \text{Poiss}(x_i;6) = 1.3e - 10$

$$L(x_i \,|\, heta) = \prod_{i=1}^n f(x_i; heta) \qquad \ln L(x_i \,|\, heta) = \sum_{i=1}^N \ln f(x_i; heta) \qquad -\ln L(x_i \,|\, heta) = -\sum_{i=1}^N \ln f(x_i; heta) \qquad rac{\partial \ln(L)}{\partial \, heta} |_{ heta = \hat{ heta}} = 0$$

Goodness-of-fit Binomial Branching ratio Chi-square Multinomial Histogram with fixed N Cauchy Mass of resonance Poisson Number of events found Landau Ionization energy loss Prior pdf for efficiency Uniform Monte Carlo method Beta Exponential Decay time Sum of exponential variables Gamma Gaussian Measurement error Student's t Resolution function with adjustable tails

A Bernouli trial

Bernoulli trial - is an experiment where s trials are made of an event, with an independent probability p for success, and q=1-p for failure, in any given trial.

- ⇒ Each trial has two possible outcomes success/fail
- \Rightarrow The probability p of success is constant for each trial.
- \Rightarrow The probability q=1-p for failure is constant as well
- \Rightarrow Each trial is independent.

Binomial distribution

The **discrete** probability distribution to obtaining exactly n successes out of N Bernoulli trials. Each trial is true with probability p, and false with q=1-p

 \Rightarrow n is the random variable is n \Rightarrow N and P are the parametres

$$f(n;N,p) = {\binom{N}{n}} p^n q^{N-n} = \frac{N!}{n! (N-n)!} p^n (1-p)^{N-n},$$

Number of permutations x getting n out of N Probability per one permutation $E[n] = \sum_{n=0}^{N} nf(n; N, p) = Np$ $V[n] = E[n^2] - (E[n])^2 = Np(1-p)$

Example, Bayesian coin flip:

Example, Bayesian coin flip What if I threw the coin 20 times and got 5 heads... Fair coin

Poisson distribution

Binomial f(n;N,p) =
$$=\frac{N!}{n!(N-n)!}p^n(1-p)^{N-n}$$
,
With

 $N \rightarrow \infty$ and $p \rightarrow 0$ and use v = Np = finite

$$f(n;\nu) = \frac{\nu^n}{n!}e^{-\nu} \quad (n \ge 0)$$

$$E[n] = \nu, \quad V[n] = \nu.$$

Discrete distribution that describes the probability of getting exactly N events in a given time, if they appear independently and randomly in a constant rate.

An example of a poisson process

Assume that I get emails at rate of 10 messages per hour, as a poisson process

What is the probability of me getting exactly 10 emails in the next hour?

$$P(X = 10) = f_X(10) = \frac{e^{-10}\lambda^{10}}{10!} = 0.1251$$

What is the probability of me getting no emails in the next hour?

$$P(X = 0) = f_X(0) = \frac{e^{-10}\lambda^0}{0!} = e^{-10} = 4.54 * 10^{-5}$$

Radioactive sources : Binomial or Poissonian?

Is it binomial?

- Two outcomes: Nucleus either decays or doesn't
- Events are independent of each other.
- The mean rate (events per time period) is constant.

$\Gamma = \frac{\ln 2}{\tau_{1/2}}$

• Two events cannot occur at the same time.

Alas! Needs to know N !

$$N = \frac{A}{\Gamma}$$

Is it poissonian?

Yes, if:

 Decayed nuclei can "decay again", so N is constant (which is nonsense)

Or

 Number of nuclei is "large" compared to the decay rate and measuring time, so N is "Constant.

Radioactive sources : Binomial or Poissonian? Measuring the decays over 1 hour, for 1000 sources

Cs-137
$$\tau_{1/2} \sim 30$$
 years 1uCi (3.7e4 Bq).
 $\Gamma = \frac{\ln 2}{\tau_{1/2}} = \frac{\ln 2}{30 \text{ years}} = 7.3 \cdot 10^{-10} \frac{1}{\text{sec}}$
 $N_0 = \frac{A}{\Gamma} = 51 \times 10^{12}$
In 1 hour: $\Delta n = 130 \times 10^6 << N_0$
Probability of a nucleon to decay over 1 second
 $\Gamma = \frac{\ln 2}{\tau_{1/2}} = \frac{\ln 2}{75 \text{ sec}} = 9 \cdot 10^{-3} \frac{1}{\text{sec}}$
 $N_0 = \frac{A}{\Gamma} = 4 \times 10^9$ Don't
In 1 hour: $\Delta n = 30 \times 10^9 > N_0(!!!!)$ 1 hour 50 half lives

PMT example 1 Trigger rate on a single PMT

A PMT triggers at rate Γ Hz. Each trigger is τ seconds long. All triggers arriving within the time window are counted as n hits.

The expected number of hits in the window τ is $\,:\,$

 $\mu_1 = \Gamma \tau$

The rate of it triggering n times in this time window is the 0.3 rate of a single trigger times the probability of getting n-1 Trigger rate triggers following:

$$egin{aligned} \Gamma_n &= \Gamma \cdot poiss(n-1 \,|\, \mu) \ &= \Gamma \cdot e^{-\mu_1} \cdot rac{\mu_1^{n-1}}{(n-1)!} \ &= \Gamma \cdot e^{-\Gamma au} \cdot rac{(\Gamma au)^{n-1}}{(n-1)!} \end{aligned}$$

- The longer the time window, the larger n
- The faster Γ the trigger rate

PMT example 2 Rate of n hits over m PMTs

In this scenario we are counting hits. If a PMT got 2 hits in the same trigger window, it will be counted as "2"

A PMT triggers at rate Γ Hz.

The rate of a single hit over all m PMTs is : $\Gamma_m^1 = m \cdot \Gamma$

The expected number of hits in the time window is: $\mu = \Gamma_m^1 \cdot au = m \cdot \Gamma \cdot au$

The rate in which total of n hits (not PMTs) are observed over all PMTs is:

$$egin{aligned} \Gamma_n^m &= \Gamma_1^m \cdot poiss(n-1 \,|\, \mu) \ &= m \cdot \Gamma \cdot e^{-\mu} rac{\mu^{n-1}}{(n-1)!} \ &= m \cdot \Gamma \cdot e^{-m\Gamma au} rac{(m\Gamma au)^{n-1}}{(n-1)!} \end{aligned}$$

This scenario (using m PMTs with rate Γ) is **identical** to the previous (using 1 PMT with rate m Γ)

So this is like example 1, but with a trigger rate m times higher.

PMT example 3 Rate of m PMTs over n PMTs

In this scenario we are counting PMTs... If a PMT got 2 hits, it will be counted as "1"....

A PMT triggers at rate Γ Hz.

The probability that a PMT didn't trigger is: $\, p_0 = poiss(0\,|\,\mu) = e^{-\mu} \,$

The probability of **exactly** m PMTs triggering is the probability that m triggered, and (n-m) did not:

$$p_n = rac{m!}{(m-n)! \cdot n!} (1-p_0)^n \cdot p_0^{m-n}$$

So...using $\Gamma^1_m = m \cdot \Gamma$ which is the rate of a single hit over m PMTs is

$$\Gamma_n^m = \Gamma_1^m \cdot p_{n-1} = m \cdot \Gamma \cdot \frac{(m-1)!}{(m-n)! \cdot (n-1)!} \cdot (1-p_0)^{n-1} \cdot p_0^{m-n} =$$

$$= m \cdot \Gamma \cdot \frac{(m-1)!}{(m-n)! \cdot (n-1)!} \left(e^{+\Gamma \tau} - 1 \right)^{n-1} \cdot e^{-\Gamma \tau (m-1)}$$

How coincedence lowers the trigger ratre

PMT coincedence rate

Time between triggers in a Poisson process

In a poisson process events occurs on average at rate λ per unit time

In average there will be λt occurrences per time t.

$$p(x;\lambda t)=rac{e^{-\lambda t}(\lambda t)^x}{x!}$$

The probability of observing no events in time t is

$$P(0) = e^{-\lambda t}$$

This is the cumulative distribution, we will differentiate by t and get the PDF:

 $f(t) = \lambda e^{-\lambda t}$

Time difference is distributed exponentially

The exponential distribution

$$f(t) = \begin{cases} \lambda e^{-\lambda t} & \text{if } t \ge 0 \\ 0 & \text{if } t < 0 \end{cases} \qquad E(x) = \frac{1}{\lambda} \\ V(x) = \frac{1}{\lambda^2} \end{cases}$$
$$F(t) = \begin{cases} 1 - e^{-\lambda t} & \text{if } t \ge 0 \\ 0 & \text{if } t < 0 \end{cases}$$

Memoryless - The past has no bearing on its future behaviour \Rightarrow Waiting time paradox" $P(x > s + t \mid x > s) = P(x > t) = e^{-\lambda t}$

Gaussian distribution

For large λ , Poisson \Rightarrow Gaussian with $\mu = \lambda$ and $\sigma = \text{sqrt}(\lambda)$

The Z score

$$Z = rac{x-\mu}{\sigma}$$

And on the cumulative distribution:

- $\phi(z) = P(Z \le z)$
- $1-\phi(z) = P(Z > z)$

Random variable can be standardized so its mean is 0, and standard deviation=1 so:

The Z table

 \Rightarrow P(z<0) =0.5 = $\phi(0.5)$

 \Rightarrow P(z<0.44)= ϕ (0.44)=0.67 -

 \Rightarrow p(z>0.44)=1- ϕ (0.44)=1-0.67=0.33

 \Rightarrow p(z<-0.44)= ϕ (-0.44)

=-(0.67-0.5)+0.5=0.33

z

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A company manufactures Al foils with a mean thickness of $100\mu m$ and a standard deviation of $10\mu m$. What is the approximate probability that a foil will be more than $120\mu m$ thick?

What is the probability a sample of 25 foils will have an average thickness of more than $95\mu m$?

$$\sigma_{\bar{x}} = rac{\sigma_x}{\sqrt{n}} = rac{10}{\sqrt{25}} = 2$$
 $\phi\left(rac{x-\mu}{\sigma_{\bar{x}}}
ight) = \phi\left(rac{95-100}{2}
ight)$
 $= \phi(-2.5)$
 $= 1 - \phi(2.5)$
 $= 1 - 0.9338$
 $= 0.0062$

Central limit theorem (CLT)

The sum of n independent random variables xi, each taken from a distribution with finite variance σ_{i}^{2} and Mean value μ_{i}

Then the sum y :

Has an expectation value of:

 $y = \sum_{i=1}^{n} x_i$ $E[y] = \sum \mu_i$

Has a variance of:

$$V[y] = \sum_{i=1}^{n} \sigma_i^2$$

i=1

When $n \rightarrow \infty$, the random variable X becomes a gaussian

In the case of repeated measurements:

All μ_i have the same value " μ " and:

 $E[y]=n\mu$

All σ_i have the same value " σ " and:

 $V[y]=n\sigma 2$

And the averages are:

$$E[\mathbf{y}] = \frac{y}{n}$$

$$V[\mathbf{y}] = Var\left(\frac{y}{n}\right) = \frac{1}{n^2} Var\left(y\right) = \frac{1}{n^2} n \sigma^2 = \frac{\sigma^2}{n}$$

$$\sigma[\mathbf{y}] = \frac{\sigma}{\sqrt{n}}$$

Central limit theorem (CLT)

The sample mean will approximately be normally distributed for large sample sizes, regardless of the distribution from which we are sampling.

Bonus exercise : DIY - 🖕 🖕

A few words on Monte Carlo

Numerically generating "random" data sets, usually on a computer

What we need for simulation?

- 1. Model(s)
- 2. Random number (but not too random)
- 3. Sampler

⇒ Using random numbers? Make sure to seed correctly...

How to generate an arbitrary PDF from a flat distribution?

Numerous methods exist.

I will briefly review three:

- Simulate the physical process
- Inverse transform method
- Rejection method

Monte Carlo sampling by "physicsal processes" Example: Poisson process example

The goal: Write a Poissonian sampler, using only flat random number generator. Go into the "core" - simulate "decays"

- \Rightarrow The probability is given as input Γ .
- \Rightarrow Loop over time in some stamps.
- \Rightarrow Draw a flat distributed random number,
- If it is greater than the given time constant do nothing.
- If it is lighter than the given time constant count an event.

 \Rightarrow Choose your units and scale carefully.

MC sampling using Inverse Transformation Example: generating an exponential distribution from flat

 $f(z) = \frac{1}{\tau} \exp(-z/\tau)$

$$F(x) = \int_{0}^{x} \frac{dz}{\tau} \exp(-z/\tau) = \int_{0}^{x/\tau} dy \, e^{-y} = 1 - \exp(-x/\tau)$$

- 1. If Y is a random number between 0-1, we'll set:
 - $Y = F(x) = 1 e^{-x/\tau}$
- 2. And solve for x:

 $x = -\tau \ln(1 - Y)$

(1-Y)

This method is efficient, fast, accurate

But not always feasible...

3. But since both Y and 1-Y are uniform we can also use: $x = -\tau \ln Y$

Now, if we put "flat Y" we will get exponential x with the correct coverage

Illustrations from https://programming.guide/generate-random-value-with-distribution.html

MC sampling using rejection method Example: unified sampling from polar coordinates

Draw random numbers inside a circle with radius R starting from flat distributions and the following techniques:

- Rejection method: draw random x and y in [-R,R] Keep only points inside the circle.
- 2. Using variable transformation (random r in [0,R] a random θ in [0,2 π won't work]

Another useful and powerful sampling method is MCMC (Markov chain Monte Carlo) - especially important in bayesian inference when a lot of sampling is needed to account for a wide hypothesis space.

Incorrect: points cluster around the center.

Correct: points are evenly spread out.

Part 3: Estimation

Estimation

Data value(s) (random variables) $\{x1,x2,x3,...xn\}$ are drawn from some probability density function f(x; θ).

- The PDF is characterized by parameter(s) θ
- The estimator for θ , will provide an estimate for the parameter θ .
- The data values will be different each time. The estimator will remain the same but the estimate will change.

A model describes data with a **mean** μ \Rightarrow μ is a fixed unknown parameter

We estimate the mean, by calculating the **average** ("mean of the set") of our data:

$$ar{r_1} = rac{\sum_1^n x_i}{n}$$

A different set of measurements will give us a different average...etc...

Estimators properties

• Consistent

$$\lim_{n \to \infty} P\left(\left| \hat{\theta} - \theta \right| > \epsilon \right) = 0 \qquad \text{(for any } \epsilon > 0 \text{)}$$

• None-biased

The actual value = expectation value of the estimate

$$b = E\left[\left[\hat{\theta}\right] - \theta\right]$$

⇒ If bias is found it can be corrected for, by tuning the estimator ⇒ For a consistent estimator a bias will vanish as $n \rightarrow \infty$

• Efficient

Minimum variance. An estimator is said to be efficient if its variance is at a minimum value called "Minimum Variance Bound" Also exist: robustness, cimplicity... $\operatorname{var}(\hat{\theta} \mid \theta) = \mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta} \mid \theta])^2 \mid \theta]$

The likelihood function Probability of data given a parameter (model)

Data value(s) {x1,x2,x3,...xn} are drawn from some $f(x;\theta)$:

⇒ Their joint pdf will be: $f(x_1; \theta) \cdot f(x_2; \theta) \dots \cdot f(x_n; \theta)$

For example: 10 poisson distributed values around 5:

```
E.g. [9 5 8 4 1 5 5 4 8 5]
```

 $P(5) = \prod_{i=1}^{n} Poiss(x_i;5) = Poiss(9;5) \cdot Poiss(5;5) \cdot Poiss(8;5) \cdot Poiss(4;5) \dots = 0.036 \cdot 0.175 \cdot 0.065 \cdot 0.175 \dots = 1.52e \cdot 10$ $P(4) = \prod_{i=1}^{10} Poiss(x_i;4) = Poiss(9;4) \cdot Poiss(5;4) \cdot Poiss(8;4) \cdot Poiss(4;4) \dots = 0.013 \cdot 0.156 \cdot 0.029 \cdot 0.195 \dots = 1.96e \cdot 11$ $P(6) = \prod_{i=1}^{n} Poiss(x_i;6) = 1.3e \cdot 10$

 $P(heta) = \prod_{i=1}^n f(x_i; heta)$

$$L(x_i \mid heta) = \prod_{i=1}^n f(x_i; heta) \qquad \ln L(x_i \mid heta) = \sum_{i=1}^N \ln f(x_i; heta) \qquad -\ln L(x_i \mid heta) = -\sum_{i=1}^N \ln f(x_i; heta) \qquad rac{\partial \ln(L)}{\partial heta}|_{ heta = \hat{ heta}} = \mathbf{0}$$

Maximum Likelihood Estimator

Maximum likelihood (ML) estimator for θ

$$-\ln L(x_i\,|\, heta) = -\sum_{i=1}^N \ln f(x_i; heta)$$

The game plan:

- 1. Take N measurement of random variable x
- 2. Hypothesize a model e.g.
- 3. Write the log likelihood

$$-\ln L(x \,|\, f) = -\sum_{i=1}^N \ln \left(P(x \,|\, f)
ight)$$

4. Minimize -In(L) w.r.t. Your parameter (f) - analytically if possible. Or numerically

-In(L)

 $P(x) = f \cdot P_{ ext{signal}}(x) + (1-f) \cdot P_{bck}(x)$

The most probable value of the likelihood is the maximum likelihood estimator

The spread around the minimum is usually the measure of the accuracy

Maximum Likelihood Estimator

- Maximum likelihood estimators are usually consistent
- Maximum likelihood estimators are usually biased, but it gets better as N+infinity
- In the asymptotic limit, the estimator is efficient.

$$V\Big(\hat{\theta}\Big) \geq \frac{-1}{\frac{d^2 \ln L}{d\theta^2}} \quad \square \longrightarrow \quad \sigma_{\hat{\theta}}^2 = V\Big(\hat{\theta}\Big) = \frac{-1}{\frac{d^2 \ln L}{d\theta^2}}$$

• Maximum likelihood estimators are invariant under parameter transformation

* This statement is based on a term called "Minimum Variant Bound" (or MVB). It says there is a "best case estimator" which gives smallest RMS value when averaged over thousands of expereriments. $V(\hat{a}) > -(1 + \frac{db}{d\theta})^2$

What about the uncertainty? 4 options

 \Rightarrow Option 1: In some cases, this can be calculated analytically $a'\mathbf{k}[\hat{\theta}] = E[\hat{\theta}^2] - (E[\hat{\theta}])^2$

⇒ Option 2: Monte Carlo: Simulate "many" experiments with similar sample size, collect the expectation values in an histogram, and estimate the variance.

Asymptotic normality - ML estimators, for large sample limit, the distribution will be apx gaussian.

Gentle practical points

- What values to use ("truth" or "expectation")?
- Simulate all identical sample sizes (e.g. N=50) or do N=Poisson(50)?
- What happens when parameter is near its limit (i.e. positive only).

If we take a taylor series expansion about the ML estimator $\boldsymbol{\theta}$

What about the uncertainty? (cont) 4 options

 $\Rightarrow \text{Option 3: "Information inequality" or "Rao Cramer Frechet inequality"}$ $(Holds not only for ML estimators). For efficient, unbiased estimators <math>\hat{\sigma}^2_{\theta=\theta_0} = \left(-\frac{\partial^2 \ln L}{\partial \theta^2}\right)_{\theta=\theta_0}^{-1}$

 $\Delta \theta$ + and $\Delta \theta$ + are not necessarily equal. With good statistics this will become parabola and they will equal.

Not quite parabolic $\ln L$ since finite sample size (n = 50).

Unbinned extended likelihood

So far we looked at "shapes" only:

$$L\left(ec{ heta}
ight) = \prod_{i=1}^n f\left(x_i;ec{ heta}
ight)$$

We can include also the expected number of events by including a Poisson term

$$L\left(N;\vec{\theta}\right) = Poiss(n \mid N) \prod_{i=1}^{n} f\left(x_i \mid \vec{\theta}\right) = \frac{N^n e^{-N}}{n!} \prod_{i=1}^{n} f\left(x_i \mid \vec{\theta}\right) = \frac{e^{-N}}{n!} \prod_{i=1}^{n} N \cdot f\left(x_i \mid \vec{\theta}\right)$$

Let's log it:

$$\ln\left(L
ight)=-N-\ln\left(n!
ight)+\sum_{i=1}^{n}\ln N+\sum_{i=1}^{n}\ln f\!\left(x_{i}^{\,ec{i}}\, heta
ight)==-N+n\cdot\ln N+\sum_{i=1}^{n}\ln f\!\left(x_{i}^{\,ec{i}}\, heta
ight)$$

To find the minimum of -ln(L):

$$-rac{\partial \ln L}{\partial N} = 1 - rac{n}{N} = 0 \implies n = N \qquad -rac{\partial \ln L}{\partial heta_1} = 0\,, \; -rac{\partial \ln L}{\partial heta_2} = 0$$
Unbinned extended likelihood

Same idea, only binned...

• Switching from n events, to N bins so:

 $n=n_1+n_2+n_3+...+n_N$

• The number of expected events in each bin will be integrated for the data, and for the models

Some other useful extensions to the likelihood

$$\begin{array}{ll} \text{Model combination} & f(x_i \mid \bar{\theta}) = \sum_{components} \theta_j f_j(x) \quad \text{where } \sum_{components} \theta_i = 1 \quad \text{e..g:} \\ L = L(x_i \mid N, \mu_s, \sigma_s, \mu_b, \sigma_b, \alpha_s, \alpha_b, \alpha_r, \Gamma) = Poiss(n \mid N) \cdot \prod_{i=1}^n (\alpha_s gaus(\mu_s, \sigma_s) + \alpha_b gaus(\mu_b, \sigma_b) + \alpha_r \exp(\Gamma)) \end{array}$$

Additional data sets

For example include auxiliary calibration data, constraining some of the used parameters. e.g.

$$L = L\left(x_{i}, x_{j} \mid N, \bar{\theta}, N_{cal}, \theta_{cal}^{-}, \bar{\theta^{\star}}\right) = \left[Poiss(n \mid N) \cdot \prod_{i=1}^{n} f_{data}\left(x_{i} \mid \theta, \bar{\theta^{\star}}\right)\right] \cdot \left[Poiss(n_{cal} \mid N_{cal}) \cdot \prod_{j=1}^{n_{cal}} f_{cal}\left(x_{j} \mid \theta_{cal}^{-}, \bar{\theta^{\star}}\right)\right]$$

Parameter constraints

Add distributions with (e.g) gaussian constraint to the likelihood function. E.g.

 $gaus(\mu_s \,|\, \mu_{model}, \sigma)$

Bad news! More parameters means...

No analytical solution

For each parameter we set the derivative to zero. The equations become more and more complex.

Chances to solve analytically are low.

Solution: program it.

However: Minimizers only partly useful.

Larger uncertainties

The likelihood curve will become wider and wider

(don't believe me? Simulate it and check)

 $L\left(\underline{x_i, x_j; N, \alpha_s, \alpha_b, \overline{\theta}, \theta_{aux}, \theta_{constra}} \dots\right)$

Data points (list of (s1,s2))

parameters

 $\hat{ heta}$ -In(L)

1.6 1.4

Use the data-set(s) and find the minimum of this

profile likelihood

* To be more precise, the parameter of interest is not N_{signal} , but rather σ ... but we will discuss this issue later

Profile likelihood

- μ Parameter of interest
- θ Nuisance parameter
- x data

 $\lambda(\bar{x} \mid \mu) = \frac{L\left(\bar{x} \mid \mu, \hat{\theta}\right)}{L\left(\bar{x} \mid \hat{\mu}, \hat{\theta}\right)}$ Maximized value of L. (unconditional)

Value of nuisance

Profiling in action

 $\sum_{i=1}^{N} = \left(\hat{\theta_1}, \hat{\theta_2}\right) \text{ Minimum for a specific } \mu$ $\bigcirc = (0,0) \text{ Nominal}$

Profiling in live action

 $\sum_{i=1}^{N} = \left(\hat{\theta_1}, \hat{\theta_2}\right)$ Minimum for a specific μ $\bigcirc = (0,0)$ Nominal

Profile likelihood Wilks' theorem

The distribution of q evaluated at μ approaches a chi-square pdf asymptotically $q_{\mu}=-2\ln\lambda(\bar{x}\,|\,\mu)$

$$f(q_\mu(\mu)) = f(-2\ln\lambda(\mu\,|\,\mu))$$

$$(\theta|\theta|\chi^{2} \theta|\tau^{-2} \log \lambda(\theta) \sim \chi_{n}^{2}$$

 μ - Parameter of interest θ - Nuisance parameter

$$\lambda(ar{x}\,|\,\mu) = rac{Lig(ar{x}\,|\,\mu,\hat{ heta}ig)}{Lig(ar{x}\,|\,\hat{\mu},\hat{ heta}ig)}$$

What does it mean?

- We pick a model
- We generate MC experiments using this model
- For each experiment we check the value of the test statistics under the same assumption it was generated with, and add this value to a histogram
- We will get a chi2 distribution

Why is this important

- For our "real" measurement, we can now estimate q for a given model.
- From the value of q we can estimate probabilities assuming that the model we tested is correct

$P_{stb} = \int f(q, r) dq = 1 - \Phi(\sqrt{q})$	$\phi(\sqrt{q_{-}})=0.1 \rightarrow \phi(\sqrt{q_{-}})=0.9=1-\infty$
r r'	407 Vqr = 0 (0.9) = 1.28
TMath: NormQuantile (0.9)	957. Vq. q (0.95) = 1.64

To estimate the sensitivity we use $\hat{M} = \hat{M}'$ for the median, and $\hat{M} = \hat{M}' \pm N \sigma$ for the bands

* with No cc, correction ; like before. $P_{STb} = \propto = 1 - \phi(\sqrt{2r}) = 1 - \phi(\frac{M-r^2}{a}) =$ $q_r \left(\frac{r-r}{\tau}\right)^r$ $1 - \alpha = \phi\left(\frac{p - p^2}{q}\right)$ \$ (1-x) = m-m r= m - v d'(1-a) For median we will replace & M=M' $\mu_{\text{medium}} = \mu^1 + \nabla \cdot \hat{D}^{-1} (1 - \alpha)$ For band we replace: $\hat{p} = p + N \nabla$ $\begin{bmatrix} N_0 & CLS \\ For \alpha = 0.1 & (qor, cc) \end{bmatrix}$ $\begin{bmatrix} N_0 & CLS \\ For \alpha = 0.1 & (qor, cc) \end{bmatrix}$ $n = -2 \rightarrow M_{-2} = (-0.18) \nabla$ N=-1 , r = (n, 24) F.

Comic relief

https://xkcd.com/1132/

Part 4: Inference

Significant intervals

Experiment → Random variable → Estimator → Result

How confident are we about this result?

How close is the "real" theta to our theta estimation?

- $1-\alpha$ is called confidence level (0-1 or 0-100%)
- [a,b] is the confidence interval

the probability that the "true" value of parameter θ is in the interval [a,b] is greater than 1- α $\hat{m} \pm \sigma_m \Longrightarrow [\hat{m} - \sigma_m, \hat{m} + \sigma_m]$ $\hat{\Gamma} \pm \sigma_{\Gamma} \Longrightarrow [\hat{\Gamma} - \sigma_{\Gamma}, \hat{\Gamma} + \sigma_{\Gamma}]$

$$\hat{ au} \pm \sigma_ au \Longrightarrow [\hat{ au} - \sigma_ au, \hat{m} + \sigma_ au]$$

For a given α i we can choose different regions

Bayesian credible intervals

$$p(\mu_t|x) = \frac{\mathcal{L}(x|\mu_t) \ p(\mu_t)}{p(x)}$$

A Bayesian interval [μ 1, μ 2] with confidence level α is (

$$\int_{\mu_1}^{\mu_2} p(\mu_t | x) \ d\mu_t = \alpha$$

Easily obtained from the posterior pdf

Frequentist confidence intervals What does it mean?

Experiment → Random variable → Estimator → Result

 $\hat{m} \pm \sigma_m \Longrightarrow [\hat{m} - \sigma_m, \hat{m} + \sigma_m] \ \hat{\Gamma} \pm \sigma_\Gamma \Longrightarrow \left[\hat{\Gamma} - \sigma_\Gamma, \hat{\Gamma} + \sigma_\Gamma
ight] \ \hat{ au} \pm \sigma_ au \Longrightarrow [\hat{ au} - \sigma_ au, \hat{m} + \sigma_ au]$

What does it mean?

Repeating our experiment many times....

68% of the resulting $\hat{t} \sigma$ intervals include the true value τ of the parameter

 \mathbf{X} In 68% of the experiments the true value is the $\mathbf{\hat{t}} \pm \sigma$ range

 \mathbf{X} There is 68% probability that the true value is in the $\mathbf{\hat{t}}\pm\sigma$ range

100 simulated experiments with 5% confidence intervals.

Frequentist Confidence interval

A confidence interval $[\mu 1, \mu 2]$ is a member of a set, such that the set has the property that

 $P(\mu \in [\mu_1, \mu_2]) = \alpha$

- \Rightarrow Ensemble of experiments with a fixed unknown μ
- $\Rightarrow \mu 1$ and $\mu 2$ depends on the measured x

 \Rightarrow Intervals will contain the unknown true μ in fraction α of experiments

 \Rightarrow If it holds for every allowed μ the intervals cover μ with α confidence ("correct coverage")

 \Rightarrow If for any value of μ for which $P(\mu \in [\mu 1, \mu 2]) < \alpha$ then the intervals undercover this μ

⇒ If for any value of μ for which P($\mu \in [\mu 1, \mu 2]$) > α then the intervals overcover this μ

⇒ Conservative intervals - only overcover. The price : loss of power in rejecting false hypothesis

- Frequentist: $[\mu 1, \mu 2]$ contains the fixed, unknown μt in a fraction a of hypothetical experiments
- Bayesian: the degree of belief that μt is in [$\mu 1$, $\mu 2$] is a
- These views can correspond, but they don't have to

Method of constructing confidence intervals with the desired level of coverage

Method of constructing confidence intervals with the desired level of coverage

 $P(x < x_1 \,|\, heta) + P(x > x_2 \,|\, heta) = lpha$

Method of constructing confidence intervals with the desired level of coverage

 $P(x < x_1 \,|\, heta) + P(x > x_2 \,|\, heta) = lpha$

Method of constructing confidence intervals with the desired level of coverage

Example for Neyman construction

Constructing a 90% two sided interval for a normal gaussian distributed random variable:

 $\Rightarrow \alpha$ =1-0.9=0.1. We'll take 0.05 from each side.

⇒ For µ=0 the relevant PDF is normal: $f(x;\mu) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}(\frac{x}{\sigma})^2}$

- X2=Z_0.95 = scipy.stats.norm.ppf(.95)= 1.64
- X1=Z_0.05= 1.64

X1=-0.64, X2=2.64

 \Rightarrow For μ =1 the relevant PDF shifts by 1:

$$f(x;\mu)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{1}{2}\left(rac{x-1}{\sigma}
ight)^2}$$

etc...

Example for Neyman construction

Constructing a 90% two sided interval for a normal gaussian distributed random variable with know width, and unknown mean $\mu \ge 0$:

 $\Rightarrow \alpha$ =1-0.9=0.1. We'll take 0.05 from each side.

⇒ For μ =0 the relevant PDF is normal: $f(x;\mu) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}(\frac{x}{\sigma})^2}$

• X2(Z=0.95) = scipy.stats.norm.ppf(.95)= 1.64

• X1(Z=0.05)= - 1.64

⇒ For μ =1 the relevant PDF shifts by 1: $f(x;\mu) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}(\frac{x-1}{\sigma})^2}$ X1=-0.64, X2=2.64

etc...

Example for Neyman construction

Constructing a 90% upper limit interval for a normal gaussian distributed random variable:

 $\Rightarrow \alpha$ =1-0.9=0.1. We'll take 0.1 from each side.

⇒ For µ=0 the relevant PDF is normal: $f(x; \mu) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{x}{\sigma})^2}$

• X1(Z=0.1) = scipy.stats.norm.ppf(.1)= -1.28

 \Rightarrow For μ =1 the relevant PDF shifts by 1:

X1=-0.28, $f(x;\mu)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{1}{2}\left(rac{x-1}{\sigma}
ight)^2}$

etc...

Neyman construction: Try it yourself

Construct Neyman belt for poisson with constant background of Nb=3

- If more than 3 sigma: Discovery!
- If between 0 and 3 sigma: Limit!
- If less than 0: Set it to 0!

For μ =2 \Rightarrow X1=2-1.28 , x2=2+1.64

Feldman-Cousins Likelihood ratio ordering principle

Based on the likelihood ratio:

$$R(x) = \frac{P(x|\mu)}{P(x|\mu_{\text{best}})}$$

 $\mu_{\rm best}$ is the (physically allowed) value that maximizes p(xlµ) for that specific x .

For fixed μ , add values of x to the interval from higher to lower R until the desired probability content is realized.

$$P(x|\mu_{\text{best}}) = \begin{cases} 1/\sqrt{2\pi}, & x \ge 0\\ \exp(-x^2/2)/\sqrt{2\pi}, & x < 0. \end{cases}$$

For an only positive gaussian gaussian:

if x≥0 then $\mu = x \Rightarrow$ If x<0 then $\mu = 0 \Rightarrow$ $R = \frac{e^{-(x-\mu)^2/2}}{1}$ $R = \frac{e^{-(x-\mu)^2/2}}{e^{-(x-\mu)^2/2}}$ We then compute R in analogy to Eq. 4.1, using Eqs. 3.1 and 4.2:

$$R(x) = \frac{P(x|\mu)}{P(x|\mu_{\text{best}})} = \begin{cases} \exp(-(x-\mu)^2/2), & x \ge 0\\ \exp(x\mu - \mu^2/2), & x < 0. \end{cases}$$

Type I and Type II errors

Type I

Reject the null when it is actually true/

The probability for this is the "significance level"

(" P-Value", "alpha").

We can choose it to be as small as we wish

Type II

Fail to reject the null when it is wrong/

If the probability of this to happen is beta,

Then "1-beta" is called "the power"

	H0 is True	H0 is False
Don't reject H0	\checkmark	Type II error β
Reject H0	Type I error α	\checkmark

Significance and power

- Significance The probability to reject H when it is true
- Confidence level = $(1-\alpha)^* 100\%$
- Type I and Type II are related when one increase, the other decrease

Neyman-Pearson Lemma - The likelihood-ratio test statistics is the most powerful test for a given significance level (alpha) . Any other test will have less power

 $\frac{P(x|H_1)}{P(x|H_0)} > k_{\alpha}$

P-value

- P-value = Probability that a test statistic will take on a value that is at least as extreme as the observed value when the null hypothesis H0 is true
- \Rightarrow If P-value > α , fail to reject HO at significance level α ;
- \Rightarrow If P-value < α , reject H0 at significance level α .
- Equivalently use significance, Z, defined as equivalent number of sigmas for a Gaussian fluctuation in one direction:

 $Z = \Phi^{-1}(1-p)$

Asymptotic formulae for likelihood-based tests of new physics

Glen Cowan¹, Kyle Cranmer², Eilam Gross³, Ofer Vitells³

¹ Physics Department, Royal Holloway, University of London, Egham, TW20 0EX, U.K.
 ² Physics Department, New York University, New York, NY 10003, U.S.A.
 ³ Weizmann Institute of Science, Rehovot 76100, Israel

Region Of Interest

1D UnBinned extended PLR

nD UnBinned extended PLR

142

PRL 100, 021303 (2008)

PHYSICAL REVIEW LETTERS

First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory

J. Angle,^{1,2} E. Aprile,^{3,*} F. Arneodo,⁴ L. Baudis,² A. Bernstein,⁵ A. Bolozdynya,⁶ P. Brusov,⁶ L. C. C. E. Dahl,^{6,8} L. DeViveiros,⁹ A. D. Ferella,^{2,4} L. M. P. Fernandes,⁷ S. Fiorucci,⁹ R. J. Gaitskell,⁹ K. R. Gomez,¹⁰ R. Hasty,¹¹ L. Kastens,¹¹ J. Kwong,^{6,8} J. A. M. Lopes,⁷ N. Madden,⁵ A. Manalaysay,¹² D. N. McKinsey,¹¹ M. E. Monzani,³ K. Ni,¹¹ U. Oberlack,¹⁰ J. Orboeck,² G. Plante,³ R. Santorelli,³ J. M P. Shagin,¹⁰ T. Shutt,⁶ P. Sorensen,⁹ S. Schulte,² C. Winant,⁵ and M. Yamashita³

Region Of Interes

XENON10 2005-2007

"However, the uncertainty of the estimated number of leakage events for each energy bin in the analysis of the WIMP search data is currently <u>limited by available calibration statistics</u>. Based on the analysis of multiple scatter events, no neutron induced recoil event is expected in the single scatter WIMP-search data set. To set conservative limits on WIMP-nucleon spin-independent cross section, we consider all ten observed events, with no background subtraction."

WHAT DO WE LEARN FROM A TPC EVENT?

Illustrated by XENON100 2011/2012 data set 225 Live days

- s1,s2:
 - Energy scale
 - Discrimination: ER vs. Nr (s1/s2)
- Vertex reconstruction
 - Fiducialization
 - Single vs. Multiple scatters
- Waveforms
- Event epoch time
- Slow control (detector stability)

- Long list of observables x: S₁, S₂, (R,z,θ), t
- Long list of parameters: $\bar{\theta}_s$, $\bar{\theta}_g$, $\bar{\theta}_b$ Some are correlated, some are not...

THE LIKELIHOOD FUNCTION

- Long list of observables x: S_1 , S_2 , (R, \overline{z} , θ), t
- Long list of parameters: $\bar{\theta}_{s}$, $\bar{\theta}_{g}$, $\bar{\theta}_{b}$

Three choices:

1. Ignore –

That's easy to implement

2. Binned model -

$$\mathcal{L} = \mathcal{L}^{I} \times \mathcal{L}^{II} \times \mathcal{L}^{III}$$

Bins in discrimination space ("bands")

Spatial bins (r,z,q)

Temporal bins (E variations, background conditions, "runs")

3. Unbinned Model

Higher dimensions for f_s, f_b Add nuisance parameters

THE LIKELIHOOD FUNCTION

Some (hopefully) good reasons to take it slowly:

- □ Limited knowledge risk of under/over coverage
 - Limited calibration
 - Lack of model
 - Always risk of mis-modeling

□Not needed

 \circ $\;$ The additional information / resolution is not needed

□Save on resources

• Modeling and minimizing. Asymptoticness (checks or bypass)

Required cpus, diskspace, people, nerves, sanity

HOW MANY BINS TO USE?

Sensitivity vs. Nbands, various Calib sizes (50 GeV, run 10)

152

XENON'S 1ST LIKELIHOOD FUNCTION

Parameter of interest:

Ns – total number of signal events

Nuisance parameters:

Nb - background events

 $\varepsilon_{c}^{i}, \varepsilon_{b}^{i}$ – distribution along bands of sig/bck

tLeff – deviation of Leff from median

XENONIT - PLR RESULTS-ITON-YEAR 2018 ANALYSIS

Introducing...

- PDFs in higher dimensions (s1,s2,r). No bands in s2.
- Larger volume used
- 4 independent background models constraint by calibration and simulation
- More nuisance parameters
- More complete interaction model
- More sophisticated background model with some a-priori fits
 - Safeguard to account for some $\int_{-1}^{0} \int_{-1}^{0} \int$

- Signal model sets: f_s and $n_s(\sigma)$ and (ϵ_s)
- Don't forget our parameter of interest is σ (not n_s)
- Energy scale: pe□□kev_{nr}
- Nuisance parameters in astrophysical model, interaction model, detector response
- No calibration sample available

(calibration data can be used to constraint parameters)

Need to artificially incorporate spatial and temporal detector

instabilities 155

SOME THOUGHT ON BACKGROUND MODEL

- Background model sets: $f_{b}(\varepsilon_{b})$ and sometimes N_{b}
 - Several components of background: Fractions can be "frozen" or be nuisance
 - Shape and magnitudes modeling
 - Calibration samples may exist statistic decreases with #variables
 - Is our background model accurate "enough"?

THE CURSE OF BACKGROUND MISMODELLING THE PROBLEM

- Too many parameters
- Hidden parameters
- Partial underlying model
-Mistakes...

Might lead to enhanced false discovery rate or overly constrained limits

THE CURSE OF BACKGROUND MISMODELLING THE PROBLEM

Arxiv:1610.02643

THE CURSE OF BACKGROUND MISMODELLINGTHE PROBLEMArxiv:1610.02643

- Use the benchmark model
- Do not add extra nuisance parameters

$$\begin{split} f_b(x) &\to (1-\varepsilon) f_b(x) + \varepsilon f_s(x) \\ L_{overall} &= Poiss(N|N_s + N_b) \prod \frac{N_s f_s(x_i) + N_b (1-\varepsilon) f_b(x_i) + N_b \varepsilon f_s(x_i)}{N_s + N_b} \times L_{cal}(\varepsilon) \\ L_{cal}(\varepsilon) &= \prod (1-\varepsilon) f_b(x_i) + \varepsilon f_s(x_i) \end{split}$$

- Works for limits and discoveries
- Safeguards background components that are based on calibration
- We found out that a similar technique used for cross checks in the LHC, "spurious signal"

EXAMPLE 1: "THE CURSE OF MISMODELLING"

The "safeguard" can provide some protection for models constructed based on calibration samples.

Nuisance parameters can be added, but

- Require some model assumption
- Complicates analysis heavier, slower

It is not enough

160

161

EXAMPLE 2: "THE CURSE OF THE UN-MODELLED"

- Include nuisance parameters without an underlying model
- Non physical regions
- Non symmetric nuisance uncertainties

EXAMPLE 3: "THE BLESSING OF ASYMPTOTICNESS"

EXAMPLE 4: "THE CURSE OF MULTIPLE DIMENSIONS"

Generating multidimensional (s1,s2,r,z...) pdf maps for "many" nuisance parameters variations

• Algorithm:

Prepare a model bank ahead of timeOr build the necessary model during minimization(Possibly with smart book keeping and archiving)

• Nuisance parameter resolution

How large a step in modeling

Interpolate?

- Verifying asymptoticness or doing mc instead becomes painful
- Also: complicated codes

$$\begin{split} \lambda(\sigma) \ &= \ \frac{\max_{\sigma \text{ fixed}} \mathscr{L}(\sigma; \mathcal{L}_{\text{eff}}, v_{\text{esc}}, N_b, \epsilon_s, \epsilon_b)}{\max \mathscr{L}(\sigma, \mathcal{L}_{\text{eff}}, v_{\text{esc}}, N_b, \epsilon_s, \epsilon_b)} \\ &\equiv \ \frac{\mathscr{L}\left(\sigma, \hat{\mathcal{L}_{\text{eff}}}, \hat{v_{\text{esc}}}, \hat{N}_b, \hat{\epsilon}_s, \hat{\epsilon}_b\right)}{\mathscr{L}\left(\hat{\sigma}, \hat{\mathcal{L}_{\text{eff}}}, \hat{v_{\text{esc}}}, \hat{N}_b, \epsilon_s, \epsilon_b\right)}. \end{split}$$

EXAMPLE 5: "THE CURSE OF HANDWAVING"

Loop on all events in each band. For each event, use its cS1 to check how likely it is to come from the signal pdf, or background pdf.

Problem: cS1 is not physical. Low PE cut, Poisson smearing should be done on s1!

EXAMPLE 6: "THE CURSE OF DIVERSITY"

e.g. Over coverage:

- Power constraint
- Cls (Roughly 90%CL 95%CL)
- Ce la vie

where

$$1 - p_b = \int_{q_{\sigma}^{\rm obs}}^{\infty} f(q_{\sigma}|H_0) \,\mathrm{d}q_{\sigma}$$

EXAMPLE 7: "THE CURSE OF PAGE LIMIT"

- Many details to the models, inference method...
- Information in papers is limited. Very often summarized to: "...as was done in [xx]."
- Would be nice to see more detailed likelihood functions...
- Would be nice to see more likelihood curves...
- Many consistency checks, verifications to be made. usually no acknowledged.
- Follow up papers become more popular, but

...cannot make everyone happy....

FIG. 4. Profile negative-log-likelihood curves for CUORE, CUORE-0, Cuoricino, and their combination.

GRAPHICAL SUMMARY

