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Fortuna - Roman goddess of luck, 
chance and  statistical inference 
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 (;  My career

 High energy
physics @LEP Neutrino astronomy

@ Icecube
Dark matter@XENON



What I would like to do here
There are excellent books/lectures/blogs/sites on everything we will discuss, and 
more.

 E.g.:
● R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical 

Sciences, Wiley, 1989

● G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998
Also online lectures and talks https://www.pp.rhul.ac.uk/~cowan/

● G.D’Agostini, Bayesian Reasoning in Data Analysis: A Critical Introduction, World 
Scientific Publishing 2003.

● PDG, Statistics summary: https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf

● Gelman et al: Bayesian data analysis: http://www.stat.columbia.edu/~gelman/book/

● https://telescoper.wordpress.com

https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf
http://www.stat.columbia.edu/~gelman/book/


What I would like to do here
There are excellent books/lectures/blogs/sites on everything we will discuss, and 
more. 

With our limited time together, I’d like to:

● Introduce basics of statistical analysis and survey some of the ways we use statistical 
analysis in UG physics

● Review basic and advanced concepts in probability, decision making and inference

● Zoom into some delicate points relevant to us, underground people

● Introduce tools and techniques that helped me in understanding and doing statistics

In the end of our sessions I hope you will see the beauty and importance of 
statistics, and be encouraged to further investigate, simulate, read and do 



Work Plan
Intro:  Statistical bloopers

Part 1: Probability:

Part 2: Distributions  and sampling 

Part 3: Estimation

Part 4: Inference



Introduction:
Statistical bloopers



The case of the wavy hand  
But what does it mean?



Hamlin et al., Am J Dent. 2009 Mar;22 Spec No A:16A-20A.
Schiff er al., Am J Dent. 2009 Mar;22 Spec No A:8A-15A.

The case of the wavy hand  
But what does it mean?



Brown = 1%, 

Red = 2%,

Gold = 5%, 

Silver = 10 % 

None = 20%

The case of the wavy hand  
But what does it mean?



What does it mean ? 

Q: How is the tolerance defined? 1 sigma? 3 sigma?

A: “only” 95-105 ohm resistance. By construction.

Q: What is the probability distribution of the resistivity? 

A: Yes

Q: Was the selection done by Design or by choice?

A: ahhhhh?

 For my birthday I got a box with  1000 resistors. 
 100Ω each, with 5% tolerance



Recovered Not recovered Total % recovery

Treated 19 21 40 47.5 %

Not treated 5 5 10 50 %

24 26 50

Young patients:

Old  patients:

Recovered Not recovered Total % recovery

Treated 1 9 10 10 %

Not treated 11 29 40 27.5 %

12 38 50

100 patient tested, 50 young and 50 less young

Researcher A looked at the results and concluded that…

Is the treatment effective?



Recovered Not recovered Total % recovery

Treated 20 30 50 40%

Not treated 16 34 50 32%

36 64 100

100 patient tested, 50 young and 50 less young

Researcher B looked at the overall results and concluded that…

Is the treatment effective?



R NR Tot % R

T 19 21 40 47.5%

NT 5 5 10 50%

24 26 50

Young patient

R NR Tot % R

T 1 9 10 10%

NT 11 29 40 27.5%

12 38 50

Old  patient

Recovered Not recovered Total % recovery

Treated 20 30 50 40%

Not treated 16 34 50 32%

36 64 100

Researcher A concluded:
“Treatment is effective”

Researcher B concluded:
“Treatment is not effective”

Is the treatment effective?



https://arxiv.org/pdf/2005.07180.pdf

Overall By age

Italy > China China > Italy

Case fatality rates in China & Italy

https://arxiv.org/pdf/2005.07180.pdf


The case of the illusive variable  
Simpson’s Paradox
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● Slope = Fraction of successes 

● Steeper vector = more success

● The orange  lines have a higher 
success rate than the blue ones

● However…The sum of the orange 
lines have a lower success rate 
than the blue on. 

Simpson’s paradox
Graphical illustration



Drawing two different conclusions from the same data, depending on how 
you divide things up

https://www.youtube.com/watch?v=t-Ci3FosqZs&ab_channel=Dr.TreforBazett

The case of the illusive variable  
Simpson’s Paradox

We don’t know what we don’t know…



https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3551767

The case of the bad fit
Good news! COVID-19 is less contagious at higher 
temperatures…

March 2020 



The case of the clerical error
Observational Constraints on the Ultra-high Energy cosmic 
Neutrino Flux from the Second Flight of the ANITA Experiment

Nov 2010  Erratum: “ . After publication, we subsequently 
determined that due to a clerical error one of the two 
surviving events, Event 8381355, was actually one of the 
inserted pulser events. The fact that this event survived 
its subsequent scrutiny we consider as a demonstration 
that the blinding procedure was truly valid”

March 2010: “. In a blind analysis, 
we find 2 surviving events on a 
background, mostly anthropogenic, 
of 0.97±0.42 events”

https://arxiv.org/abs/1011.5004



https://arxiv.org/abs/astro-ph/9611117

 Using data taken with the CASA-MIA 
detector over a five year period 
(1990-1995), we find no evidence for 
steady emission from either source at 
energies above 115 TeV. The derived upper 
limits on such emission are more than two 
orders of magnitude lower than earlier 
claimed detections

 Chicago Air Shower Array (CASA)  +  Michigan Muon Array (MIA), 1992-1999

1975-1990 1990-1995

The case of the mysterious signal
High statistics search for ultrahigh energy γ-ray emission from 
Cygnus X-3 and Hercules X-1



 A deviation from the Standard Model background-only hypothesis corresponding to 3.4 
standard deviations is observed in the 2015 data for a resonance mass hypothesis of 730 GeV. 
No significant excess at such mass over the background expectation is observed in the 2016 
data. 

2015-2016  15.4 fb-1 

More than 500 arxiv submissions
over 8 months

https://inspirehep.net/literature/1480039

The case of the statistical fluctuation 
750 GeV diphoton excess

2015 3.2 fb-1 



https://arxiv.org/abs/2110.00483 

The case of the illusive background 
Primordial gravitational waves

https://arxiv.org/abs/2110.00483


https://journals.sagepub.com/doi/pdf/10.5772/62322

The case of the mysterious plot 
Analyses of 123 Peripheral Human Immune Cell Subsets: 
Defining Differences with Age and between Healthy Donors and 
Cancer Patients not Detected in Analysis of Standard Immune 
Cell Types



Part 1 memes conclusions  



Why do we need statistics?
● quantify our knowledge (and uncertainties)::

○ Detector behaviour, Models, data, background, analysis

● Make predictions 
○ Sensitivities, Detector design, Monte carlo

● Make discoveries (or exclusions)
● Compare, and combine results 

XENON

Underground challenges:

● Rare searches: discoveries, limits
● Background modeling
● Low background
● Large data sets. Data filtering choices.
● Blind analysis, salting 

LZ

IceCube 

Eur. Phys. J. C (2021) 
81:907DarkSide50 

CRESST

MiniBooNE excess

DARWIN

XENON

PDG DM searches



My top 10 (Paranoid) advices for doing 
statistics
⇒  All models are wrong, but some are useful.

⇒ Always read the fine prints (in papers…in codes….in manuals…).

⇒ Visualize the numbers. Be creative.

⇒ Black boxes are scary.

⇒ Try it yourself - Best way to understand - is to do it! 

⇒ Comment everything (not just for other users, also for the future you)

⇒ Test your code often on “simpler” and “diverse” scenarios. Do sanity checks

⇒  If your code compiles on the “first trial” - beware! 

⇒ Always wear sun screen



Part 1:
Probability



What is probability?

Depends who you ask….

A Mathematician, two  physicists and a politician walk into a bar….

The bartender asks them: “Can you tell me what probability is?” 

The Mathematician says : “A Number between 0-1, assigned to objects in a 
sample space”

The Frequentis says: “Frequency of an outcome in a repeating experiment”

The Bayesian says: “Probability is a subjective term, representing our degree 
of belief in a hypothesis”  

The politician says: “Definitely yes!! Probably not!!”



What is probability?   The building blocks

Sample space Ω: The set of all the outcomes of a random experiment. An outcome is an element in 
the sample space ω∈Ω. 

Event space  S: A set whose elements A ∈ S (called events) are subsets of Ω (i.e., A ⊆ Ω is a 
collection of possible outcomes of an experiment). 

Probability measure P: A function P : F → R that maps objects in S to the interval [0, 1].

Ω S P
Sample space Probability

“Probability space” 

Event space



What is probability?   

Let S denote a sample space with a probability measure P defined over it, such that probability of 
any event A ⊂ S is given by P(A). Then, the probability measure obeys the following axioms:

Kolmogorov axioms: (1933)

Some set S… A,B are subsets of S.

● Non negativity: For all A⊂S, P(A)⩾0
● Unitarity: P(S)=1
● Countable additivity: 

If A∩B=0 ⇒ P(A∪B) = P(A) + P(B)

Reminder: a set S. subsets of S are A and B

A BA B

A B

A∪B
Union: ||

A∩B
Intersection: &&



We can also deduce that
We can also deduce that:
● P(A) = 1 - P(A)    (A is the complement of A)
● P(A∪A) = 1
● P(∅)=0
● If A ⊂ B then P(A)≤P(B)
● P( A ∪ B)=P (A) +P( B)−P( A∩B)

Reminder: a set S. subsets of S are A and B

A BA B

A B

A∪B
Union: ||

A∩B
Intersection: &&

👆👆👆👆👆👆👆👆👆👆👆👆👆👆
Can be deduced from Kolmogorov axioms



The sample space:
Ω = {1,2,3,4,5,6}x{1,2,3,4,5,6} 
    ={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),......,(6,4),(6,5),(6,6)}

What is M, the event that the sum of the two dice is 6:
M= 

Roll two dice

The event space:
S=Various combos of outcomes, e.g.:

P(N)=1/6

      {(1,5), (2,4), (3,3), (4,2), (5,1)}

What is N, the event of getting 4 on the first dice:

What is L, the event that the sum of the  dice is 7::
L={(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}

What is N ?
N={(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)}

P(L)=1/6

P(M)=5/36



Graphical representation of sample space 
Ben & Jerry plan to meet for ice cream  between noon 
and 1 but they are not sure of their arrival times
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B arrives after J    
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J arrives  before 12:45.    
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the event that Ben arrives 
up to 15 minutes after Jerry 
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Probability Ben arrives same time or after Jerry = 0.5
Probability that Jerry arrives first and Ben arrives at most 15 minutes after Jerry= 7/32=0.21875.
Probability that Jerry arrives first and Ben arrives at most 1 minutes after Jerry =0.0165

 



What is probability?



The probability is a the “strength of believe” that 
it is correct. 
Probabilities are associated with state of 
knowledge on parameters -  given some prior 
probabilities, how should they change provided 
the data

Elements of  s = hypotheses that are true or false 
(“hypothesis space”).  Mutually exclusive. 

Subset A = set of  one or more hypothesis

“Bayesian approach”

Relative frequency
The probability of the event is the proportion of 
times that the event would occur in a very large 
number of hypothetical repetitions of the random 
phenomenon.
Probabilities are associated only with data

Elements of  s = possible outcomes of a 
repeatable measurement

Subset A = event = corresponds to the 
occurrence of any of the outcomes in the subset

“Frequentist approach”

Subjective probability

P(A) = degree of belief that hypothesis A is true#outcome A in n measurements
nn→∞

P(A)=lim



Conditional probability

P(A|B) = Probability of A given B =

P(A ∩ B)= intersection  = Unconditional probability involving both events

P(A|B)= Conditional = Conditional probability of one event, given the other

P(B)= Marginal=Unconditional probability of a single event



P(A|B) != P(B|A)



Law of total probability

If:     A1,....,An are disjoint

&&  if:       A1∪A2∪…∪Ak = S  

then:

Sample space S

BA1

A2

A3

A4

A5

 ￼

(Conditional 
        probability)



Law of total probability
Example:
The “Look over there!!!” game  [ "acchi muite hoi" (あっち向いてホイ.])

How to play it:
● Two players face each other

👫
● On the count of 3, player A points her finger up, down, left or right.  

   👆👇👈👉
● In the same time player B points his head up, down, left or right. 

● If the directions are the same, player B wins the game. ✌

● If the directions are different they switch roles and do another round😐.

��

https://mangaboat.com/manga/karakai-jouzu-no-takagi-san/ch-082/



A=event of winning the game

B=event of winning the game on the first round

B’=event of not  winning the game on the first round

P(A) = probability of “me” winning the game=p

By the law of total probability:
P(A)=P(A|B)∙P(B)+P(A|B’)∙P(B’)
 p    =   1  ∙ 0.25 +   (1-p)∙ 0.75
Solve for p :   p=4/7=0.57

https://mangaboat.com/manga/karakai-jouzu-no-takagi-san/ch-082/

What are my chances to win if I go first?

How can you verify
 this result?

Experiment:

Play it!

Sim
ulate:

Pro
gram it!



How to code the lookaway game
●  In each round an outcome is a (point, look) pair● The random variable X will count the number of rounds till there is a winner● The game is won when  “point” == “look”● If the game ends in an odd number of rounds, the player who started will win● If the game ends in an even number of rounds, the other player will win

⇒ Loop until there is a win
⇒ Run the games 1000 times

⇒ The probability of player1 winning the game is the fraction of times the      games ended with an odd X 



Independet events doesn’t necessarily mean that  A∩B = 0 : 

⇒ L : Getting sum of 7: {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}       P(L)=⅙
⇒ M: Getting sum of 6: {(1,5),(2,4),(3,3),(4,2),(5,1)}               P(M)=5/36
⇒ N: Getting four on first :{(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)}  P(N)=⅙

Independence

Are L and N independent?

L∩N = {(4,3)} = 1/36        P(L)∙P(N) = ⅙ * ⅙ = 1/36   ⇒ Independent…

P(N|L)=if we know we got sum of 7, then the probability of getting 4 on first is ⅙, 
which is identical to the probability of getting 1:6 anyhow

Are M and N independent?
M∩N={(4,2)} = 1/36        P(M)*P(N) = 5/36*⅙=5/224 ⇒ not independent 
P(N|M) = if we know we got sum of 6, then the probability of getting 4 on first is ⅕ 

if P(A∩B)=P(A)P(B)  subsets A and B are independent. ⇒  and 



Bayes’ theorem
Using the conditional probability we can say 

P(B | A) =
P(A∩B)

P(A)
P(B∩A)

P(A)
=

P(A | B) =
P(A∩B)

P(B) =
P(B|A)∙P(A)

P(B)
P(B∩A)

P(B) =

P(A | B) =
P(B|A)∙P(A)

P(B)

P(A∩B)
P(B)P(A | B) =



Example: An antigen test I took came positive* 
What is the probability I am actually sick? 

True negative    P(T-|D-)=99.7%=”specificity”

False negative   P(T+|D-)=0.3%

True positive      P(T+|D+)=53.8% = “sensitivity”

False negative    P(T-|D+)=46.2%

Prevalence   P(D+)=0.1%

0.1% of population sick

D+  :I got the disease. I am  sick !

D- : I did not  get the  disease.  I am healthy

T+ : The antigen test came poistive

T - :  The antigen test came negative

P(D+ | T+) =
P(T+|D+)∙P(D+)

P(T+)

P(D+)=0.001 P(T+|D+)=0.997

P(T+) =  P(D+)∙P(T+|D+) + P(D-)∙P(T+|D-) =0.001*0.538 + 0.999*0.003 = 0.005675

P(D+|T+) = 0.15 = 15%

P(D+|T-) = … = 0.05%

For PCR tests:    Specificity 99.7% ,  

 Sensitivity 95.7%

* Pressum
ably



Random variables 
A Random Variable - takes on a specific value for each element of the set S

Random variables can be:
● Discrete    /    Continuous
● Single value   /   vector
● Finite  / infinite sample space

E.g.: 
X is  the sum of the two dice e.g.: {X=4}={(1,3),(2,2),(3,1)} is the event that the sum of the two dice is 4.
Y is the larger of two values e.g. {Y=3}={(1,3),(2,3),(3,3),(3,2),(3,1)} is the event that the largest value is 3

A function of a random variable is also a random variable. That is, if X is a random variable and g:R↦R is a function, then Y=g(X) is a random variable

Ω

 |   |   |   |   |   |   |   |
0  1  2  3  4  5  6  7



From Bayes theorem to Bayesian Statistics

P(A | B) =
P(B|A)∙P(A)

P(B)

We can use Bayes’ theorem to assign probabilities to hypothesis (H), based on 
assumed knowledge (I), which can be updated when data (X) become available.

Probability of a hypothesis (H) given a data (x):  

P(X|H) = The likelihood - Assuming some model, what is the probability to get data?

P(H) = (actually P(H|I)) = Prior probability - before including the new data
⇒ Determination of the prior is subjective. Even a flat prior is informative.

P(H|X)=  posterior probability - how the prior probability changed based on the new data

P(X)=(actually P(X|I)) = Normalization over all possible hypothesis. Estimated using the law of 
total probability  = ∫P(X|H)P(H)dH



What does this mean?



Part 2: 
Distributions 



PMF - Probability Mass Function
If the outcome of an experiment is discrete xi:

P(xi) is the probability mass function



PDF- Probability Density Functions

x

event  A

dx

If the outcome of an experiment is continuous x:

f(x) is the probability density function (PDF)

⇒ f(x) is nonnegative

⇒ PDFs are normalized  

⇒  (x) is not a probability



Palmer Archipelago penguins
A great intro dataset for data exploration & visualization

https://github.com/allisonhorst/penguins

Palmer Archipelago penguins…dataset



PDF- Probability Density Functions

x

dx

If the outcome of an experiment is continuous x:

f(x) is the probability density function (PDF)

⇒ f(x) is nonnegative

⇒ PDFs are normalized  

⇒  (x) is not a probability



PDF- Probability Density Functions

x

event  A

dx

If the outcome of an experiment is continuous x:

f(x) is the probability density function (PDF)

⇒ f(x) is nonnegative

⇒ PDFs are normalized  

⇒  (x) is not a probability



PDF- Probability Density Functions

x

event  A

dx

If the outcome of an experiment is continuous x:

f(x) is the probability density function (PDF)

⇒ f(x) is non-negative

⇒ PDFs are normalized  

⇒  (x) is not a probability



CDF - Cumulative distribution function

● Non-decreasing, i.e. 

● Cannot be less than 0, or more than 1

●

● Complementary CDF  (1-F(x))



The fun things we can with a (to a?) PDF

Consider 
continuous 
random variable  
x with pdf f(x)

Consider discrete 
random variable  
x with pmf P(xi)



The fun things we can with a (to a?) PDF
Reduce it to a number

Mean:

Variance:

Standard deviation:

Consider 
continuous 
random variable  
x with pdf f(x)

Consider discrete 
random variable  
x with pmf P(xi)

𝛔=sqrt(V[x]) 



The fun things we can with a (to a?) PDF
Confidence Interval

x_             x+

Consider 
continuous 
random variable  
x with pdf f(x)

Consider discrete 
random variable  
x with pmf P(xi)



The fun things we can with a (to a?) PDF
Lower limit

x_             

Consider 
continuous 
random variable  
x with pdf f(x)

Consider discrete 
random variable  
x with pmf P(xi)



The fun things we can with a (to a?) PDF
Upper limit

               x+

Consider 
continuous 
random variable  
x with pdf f(x)

Consider discrete 
random variable  
x with pmf P(xi)



● Infinite sample size
● Zero bin width
● Normalized to 1

From data to PDF



Normalizing, ah? Pay attention to what you 
use

∑Xi = 10000 

number of observations 
in each bin

number of 
observations divided 
by the bin width

normalize such that 
bar heights sum to 1

normalize such that the 
total area of the 
histogram equals 1

∑Xi = 1 ∑Xi *wi = 10000 ∑Xi *wi = 1 
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∑Xi = 10000 ∑Xi = 1 ∑Xi *wi = 10000 ∑Xi *wi = 1 

∑Xi = 10000 ∑Xi = 1 ∑Xi *wi = 10000 ∑Xi *wi = 1 

∑Xi = 10000 ∑Xi = 1 ∑Xi *wi = 10000 ∑Xi *wi = 1 
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∑Xi = 20 ∑Xi = 1 ∑Xi *wi = 20 ∑Xi *wi = 1 

∑Xi = 1000 ∑Xi = 1 ∑Xi *wi = 1000 ∑Xi *wi = 1 



Multivariate PDFs
PIn case there are several random variables (e.g. x and y):

P(A∩B) = P(x found in [x,x+dx] and y found in [y,y+dy]) = f(x,y)dxdy

If the variables are independent:

P(A∩B) = P(A)P(B) ⇒ 



Multivariate PDFs - Marginalization
Marginalization:

Extracting information for some of 
the components

The expectation value e.g.



● The probability is:

● Normalization still holds:

● If the variables are independent: 

 P(A∩B) = P(A)P(B) ⇒ f(x,y)=fx(x)fy(y)

Multivariate PDFs - Conditional
The probability that y equals Y, given that x=X….





Covariance  &  correlation
Covariance: Correlation coefficient:



If we have several random variables….
covariance matrix Correlation 
matrix





Statistics 
underground
PART II



The likelihood function
Probability of data given the parameter
Data value(s)  {x1,x2,x3,...xn} are drawn from some f(x;𝜃):

⇒ Their joint pdf will be: f(x1;𝜃)ᐧf(x2;𝜃)...ᐧf(xn;𝜃) 

For example: 10 poisson distributed values around 5:

E.g. [9 5 8 4 1 5 5 4 8 5]
P(5)=     Poiss(xi;5)=Poiss(9;5)ᐧPoiss(5;5)ᐧPoiss(8;5)ᐧPoiss(4;5)...= 0.036ᐧ0.175ᐧ0.065ᐧ0.175… =1.52e-10

P(4)=     Poiss(xi;4)=Poiss(9;4)ᐧPoiss(5;4)ᐧPoiss(8;4)ᐧPoiss(4;4)...=0.013ᐧ0.156ᐧ0.029ᐧ0.195… =1.96e-11

P(6)=     Poiss(xi;6)=1.3e-10

This describes infinite set of hypotheses described by theta. 
Important: don’t forget normalization must be for each value of theta.



Binomial Branching ratio 

Multinomial Histogram with fixed N 

Poisson Number of events found 

Uniform Monte Carlo method 

Exponential Decay time 

Gaussian Measurement error

 Chi-square Goodness-of-fit 

Cauchy Mass of resonance 

Landau Ionization energy loss 

Beta Prior pdf for efficiency 

Gamma Sum of exponential variables

 Student’s t Resolution function with adjustable tails



A Bernouli trial
Bernoulli trial - is an experiment where s trials are made of an event, with an 
independent probability p for success, and q=1-p for failure,  in any given trial.

⇒ Each trial has two possible outcomes success/fail

⇒ The probability p of success is constant for each trial. 

⇒ The probability q=1-p  for failure is constant as well

⇒ Each trial is independent. 



Mean:  Muo = NP

Number of 
permutations 
getting n out of N

Probability 
per one 
permutation

The discrete probability distribution  to 
obtaining exactly  n successes out of N  
Bernoulli trials. Each trial is true with 
probability p, and false with q=1-p

⇒ n  is the random variable is n
⇒ N and P are the parametres

f(n;N,p) = 

x

N=5
P=0.1

N=10
P=0.1

N=20
P=0.1

N=5
P=0.5

N=10
P=0.5

N=20
P=0.5

N=5
P=0.9

N=10
P=0.9

N=20
P=0.9

nn

f bi
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m
(n

;N
,P

)

Binomial distribution

https://mathworld.wolfram.com/DiscreteDistribution.html
https://mathworld.wolfram.com/BernoulliTrial.html


Example, Bayesian coin flip:

Prior:  We will start with a fair coin

The likelihood:probability of observing the data, 
given H. H is the binomial distribution so:

 

Marginalization - probability of observing the 
data summed over all hypotheses (values of p)

The Posterior! 

● x=event of getting h 
heads and t tails

● p=probability for head 



Example, Bayesian coin flip
What if I threw the coin 20 times and got 5 heads…
Fair coin

E.g.  alternative priors:

Prior =Flat Prior PriorFair coin, wide Prior=Fair coin, narrow

P(H)

P(H)
P(H)

P(X|H)

P(X|H)
P(X|H)

P(H|X)

P(H|X)
P(H|X)



Poisson distribution
Binomial f(n;N,p) = 
With
N→∞   and  p→0  and use 𝝂=Np=finite

Discrete distribution that describes the probability of getting exactly N events in 
a given time, if they appear independently and randomly in a constant rate.



An example of a poisson process
Assume that I get emails at rate of 10 messages 
per hour, as a poisson process

What is the probability of me getting exactly 10 
emails in the next hour?

What is the probability of me getting 
no emails in the next hour?



Radioactive sources : Binomial or Poissonian?

Is it poissonian?

Yes, if:

● Decayed nuclei can “decay again” , 
so N is constant (which is nonsense)

Or

● Number of nuclei is  “large” 
compared to the decay rate and 
measuring time, so N is ~Constant.

Is it binomial?

● Two outcomes: Nucleus either decays or 
doesn’t

● Events are independent of each other. 
● The mean rate (events per time period) is 

constant.

● Two events cannot occur at the same time.

Alas! Needs to know N ! 



Radioactive sources : Binomial or Poissonian?
Measuring the decays over 1 hour,  for 1000 sources

Cs-137

Rb-82

1uCi (3.7e4 Bq).

In 1 hour:
Probability of a 
nucleon to decay 
over  1 second1mCi (3.7e7 Bq).

1 hour ~ 50 half liv
es

In  1 hour:

Don’t



PMT example 1
Trigger rate on a single PMT

● The longer the time window, the slower the trigger rate
● The longer the time window, the larger n
● The faster 𝚪 the trigger rate

t𝜏 𝜏 𝜏
A PMT triggers at rate 𝚪 Hz.   Each trigger is τ seconds 
long.  All triggers arriving within the time window are 
counted as n hits.

The expected number of hits in the window τ is  :

 𝜇1=𝚪τ

The rate of it triggering n times in this time window is the 
rate of a single trigger times the probability of getting n-1 
triggers following:



In this scenario we are counting hits. If a PMT got 2 hits in the same trigger window, it will be 
counted as “2”

A PMT triggers at rate 𝚪 Hz.

The rate of a single hit over all m PMTs is :

The expected number of hits in the time window is: 

The rate in which total of n hits (not PMTs) are observed over all PMTs is:

PMT example 2
Rate of n hits over m PMTs

This scenario (using m PMTs with rate 𝚪) is identical to 
the previous (using 1 PMT with rate m𝚪)

So this is like example 1, but with a trigger rate m times higher.



In this scenario we are counting PMTs… If a PMT got 2 hits, it will be counted as “1”....

A PMT triggers at rate 𝚪 Hz.

The probability that a PMT didn’t trigger is:  

The probability of exactly m PMTs triggering is the probability that m triggered, and (n-m) did not:

So…using                              which is the rate of a single hit over m PMTs is

PMT example 3
Rate of m PMTs over n PMTs



How coincedence lowers the trigger ratre
Γ=3 kHz



Time between triggers in a Poisson process
In a poisson process events occurs on average at rate 𝛌 per unit time

In average there will be 𝛌t occurrences per time t.

The probability of observing no events in time t is

This is the cumulative distribution, we will differentiate by t and get the PDF:

Time difference is distributed exponentially  



The exponential distribution

Memoryless - The past has no bearing on its 
future behaviour      → Waiting time paradox”When waiting for a bus that comes on 

average every 10 minutes, your 

average waiting time will be 10 

minutes.



Gaussian distribution
For large λ, Poisson → Gaussian with μ=λ and σ=sqrt( λ)



The Z score

And on the cumulative distribution:

● ɸ(z)= P(Z< z)
● 1-ɸ(z)= P(Z> z)

Random variable can be 
standardized so its mean is 0, and 
standard deviation=1 so:



The Z table
⇒ P(z<0) =0.5 = ɸ(0.5)

⇒ P(z<0.44)=ɸ(0.44)=0.67

⇒ p(z>0.44)=1-ɸ(0.44 )= 1-0.67=0.33

⇒ p(z<-0.44)=ɸ(-0.44) 

                     =-(0.67-0.5)+0.5=0.33



Example
A  company manufactures Al foils with a mean  thickness of 100µm  and a standard 
deviation of 10µm.  What is the approximate probability that a foil will be more than 120µm 
thick?

What is the probability a sample of 25 foils will have an average thickness of more than 
95µm?



The sum of  n independent random variables xi, 
each taken from a distribution with  finite variance 
𝛔i

2  and Mean value 𝝁i

Then the sum y :

Has an expectation value of:

Has a variance of:

When n→∞, the random variable X becomes a 
gaussian

In the case of repeated measurements:

All 𝝁i   have the same value “ 𝝁” and:

E[y]=n 𝝁 

All 𝛔i have the same value “𝛔“ and:

V[y]=n𝛔2

And the averages are:

Central limit theorem (CLT)



Central limit theorem (CLT)
The sample mean will approximately be normally distributed for large sample sizes, regardless 
of the distribution from which we are sampling. 

Bonus exercise : DIY - 👆👆👆



A few words on Monte Carlo
Numerically generating “random” data sets, 
usually on a computer

What we need for simulation?
1. Model(s)
2. Random number (but not too random)
3. Sampler

⇒ Using random numbers? Make sure to 
seed correctly…

How to generate an arbitrary PDF 
from a flat distribution?

Numerous methods exist. 

I will briefly review three: 

● Simulate the physical process
● Inverse transform method
● Rejection method



Monte Carlo sampling by “physicsal processes”
Example: Poisson process example

⇒ The probability is given as input Ⲅ.

⇒ Loop over time in some stamps.

⇒ Draw a flat distributed random number, 

● If it is greater than the given time constant do nothing.  
● If it is lighter than the given time constant count an event.

⇒ Choose your units and scale carefully.

The goal: Write a Poissonian sampler, using only flat random 
number generator.   Go into the “core” - simulate “decays”



MC sampling using Inverse Transformation
Example: generating an exponential distribution from flat

1. If Y is a random number between 0-1,  we’ll set:

2. And solve for x:

3.   But since both Y and 1-Y are uniform we can also use:

Now, if we put “flat Y” we will get exponential x with the correct coverage

This method is efficient, fast, accurate

But not always feasible…

Illustrations from https://programming.guide/generate-random-value-with-distribution.html

pdf cdf



MC sampling using rejection method
Example: unified sampling from polar coordinates

Draw random numbers inside a circle with radius R 
starting from flat distributions and  the following 
techniques:

1. Rejection method: draw random x and y in [−R,R] 
Keep only points inside the circle.

2. Using variable transformation ( random r in [0,R] a 
random  θ in [0,2π won’t work]

Another useful and powerful sampling method is MCMC 
(Markov chain Monte Carlo) - especially important in 
bayesian inference when a lot of sampling is needed to 
account for a  wide hypothesis space.



Part 3:
Estimation



Estimation
Data value(s) (random variables)  {x1,x2,x3,...xn} 
are drawn from some probability density 
function f(x;𝜃). 

● The PDF is characterized by parameter(s) 𝜃
●  The estimator for 𝜃, will provide an 

estimate for the parameter 𝜃.
● The data values will be different each time. 

The estimator will remain the same but the 
estimate will change.

Estimator

x1
x2
.
xn

Estimate

A model describes data with a mean 𝜇
⇒  𝜇 is a fixed unknown parameter

We estimate the mean, by calculating the 
average (“mean of the set”) of our  data:

A different set of measurements will give us 
a different average…etc…

𝜇



Estimators properties
● Consistent

                                         (for any ε>0)

● None-biased
The actual value =  expectation value of the estimate 

𝚹⇒ If bias is found it can be corrected for, by tuning the estimator
⇒ For a consistent estimator a bias will vanish as n→∞

● Efficient
Minimum variance.  An estimator is said to be efficient if its variance is at a 
minimum value called “Minimum Variance Bound”

Also exist: robustness, cimplicity…



The likelihood function
Probability of data given a parameter (model)

Data value(s)  {x1,x2,x3,...xn} are drawn from some f(x;𝜃):

⇒ Their joint pdf will be: f(x1;𝜃)ᐧf(x2;𝜃)...ᐧf(xn;𝜃) 

For example: 10 poisson distributed values around 5:

E.g. [9 5 8 4 1 5 5 4 8 5]

P(5)=     Poiss(xi;5)=Poiss(9;5)ᐧPoiss(5;5)ᐧPoiss(8;5)ᐧPoiss(4;5)...= 0.036ᐧ0.175ᐧ0.065ᐧ0.175… =1.52e-10

P(4)=     Poiss(xi;4)=Poiss(9;4)ᐧPoiss(5;4)ᐧPoiss(8;4)ᐧPoiss(4;4)...=0.013ᐧ0.156ᐧ0.029ᐧ0.195… =1.96e-11

P(6)=     Poiss(xi;6)=1.3e-10

This describes infinite set of hypotheses described by theta. 
Important: don’t forget normalization must be for each value of theta.



The game plan:

1. Take N measurement of random variable  x
2. Hypothesize a model e.g. 
3. Write the log likelihood

4. Minimize -ln(L) w.r.t. Your parameter (f) -  analytically if possible. Or numerically

The most probable value of the likelihood is the maximum likelihood estimator

The spread around the minimum is usually the measure of the accuracy

Maximum likelihood (ML)  
estimator for 𝜃

-ln
(L

)

f

Maximum Likelihood Estimator



Maximum Likelihood Estimator
● Maximum likelihood estimators  are usually consistent
● Maximum likelihood estimators  are usually biased, but it gets better as 

N→infinity
● In the asymptotic limit, the estimator is efficient. 

● Maximum likelihood estimators   are invariant under parameter 
transformation

*  This statement is based on a term called “Minimum Variant Bound” (or MVB). It says there 
is a “best case estimator” which gives smallest RMS value when averaged over thousands of 
expereriments.

*



Gentle practical points

● What values to use (“truth” or “expectation”)?
●  Simulate all identical sample sizes (e.g. N=50) or do N=Poisson(50)?
● What happens when parameter is near its limit (i.e. positive only).

What about the uncertainty?
4 options
⇒ Option 1: In some cases, this can be calculated analytically  a’la’

⇒ Option 2: Monte Carlo: Simulate “many” experiments with similar sample size, collect the 
    expectation values in an histogram, and estimate the variance. 

                      Asymptotic normality - ML estimators, for large sample limit, the distribution will 
                      be apx gaussian.



⇒ Option 3: “Information inequality” or “Rao Cramer Frechet inequality” 
    (Holds not only for ML estimators). For efficient, unbiased estimators:

⇒ Option 4: The graphical method:  If we take a taylor series expansion about the ML estimator 𝜃

What about the uncertainty? (cont)
4 options

If we take a taylor series expansion 
about the ML estimator 𝜃

ln
(L

)

𝜟𝜃+ and 𝜟𝜃+ are not necessarily equal. With good statistics this will become parabola and they will equal. 



For example…
Not quite parabolic ln L since finite sample size 
(n = 50).



So far we looked at “shapes” only:

We can include also the expected number of events by including a Poisson term

Unbinned extended likelihood

Let’s log it:

To find the minimum of -ln(L):



Unbinned extended likelihood
Same idea, only binned…

● Switching from n events, to N bins so:

n=n1+n2+n3+...+nN

● The number of expected events in each 
bin will be integrated for the data, and for 
the models



Some other useful extensions to the likelihood

Additional data sets
For example include auxiliary calibration data, constraining some of the used parameters. e.g:

Model combination                                                      where                   e..g:

Parameter constraints
Add distributions with (e.g) gaussian constraint to the likelihood function. E.g:

😊



Bad news! More parameters means…
No analytical solution

For each parameter we set the derivative to zero. The equations 
become more and more complex.  

Chances to solve analytically are low.

Solution: program it.

However: Minimizers only partly useful.

Larger uncertainties

The likelihood curve will become wider and wider

(don’t believe me? Simulate it and check)



Use the data-set(s) and find the minimum of this 

Data points
(list of  (s1,s2))

parameters

-ln(L)



* To be more precise, the parameter of interest is not Nsignal , but rather 𝜎… but we will discuss this 
issue later

“𝜇”
Parameter 
of interest*

“𝜃” 
Nuisance parameters 



Profile likelihood 

Value of nuisance 
parameter that 
maximizes L for  a 
specific 𝜇

Maximized 
value of L.
(unconditional) 

𝜇 - Parameter of interest
𝜃 - Nuisance parameter
x - data



Profiling in action
Param of interest = val1 Param of interest = val2 Param of interest = val2

Nuisance parameter 𝜭1
In 𝜎 units around nominal

N
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 𝜭
2

Nominal value 

𝜭1 𝜭1

𝜭1

𝜭2𝜭2
𝜭2

=             Minimum for a specific 𝜇
= (0,0)  Nominal



Profiling in live action

Param of interest 

𝜭1

𝜭2

=             Minimum for a specific 𝜇
= (0,0)  Nominal

Nuisance parameters

LL curve with 
profiling

LL curve with no 
profiling



Profile likelihood
Wilks’ theorem 

𝜇 - Parameter of interest
𝜃 - Nuisance parameter

The distribution of q evaluated at 𝜇 approaches a 
chi-square pdf asymptotically 

What does it mean?
● We pick a model
● We generate MC experiments using this  model
● For each experiment we check the value of the 

test statistics under the same assumption it was 
generated with, and add this value to a histogram

● We will get a chi2 distribution

Why is this important
● For our “real” measurement, we can now 

estimate q for a given model. 
● From the value of q we can estimate 

probabilities assuming that the model we 
tested is correct



How to do limits?



59 - 67



Comic relief
https://xkcd.com/1132/



Part 4:
Inference



Significant intervals
Experiment → Random variable → Estimator → Result

How confident are we about this result? 

How close is the “real” theta to our theta estimation?

● 1-⍺ is called confidence level (0-1 or 0-100%)
● [a,b] is the confidence interval

the probability that the “true” value of parameter θ is in the interval [a,b] is greater 
than 1-⍺

For a given ⍺ i we can  choose different regions



Bayesian  credible intervals

A Bayesian interval [µ1, µ2]  with confidence level ⍺  is constructed such as:

Easily obtained from the posterior pdf



Frequentist confidence intervals
What does it mean?

What does it mean?

Repeating our experiment many times….

✅  68% of the resulting τ±̂ σ intervals include the true value 𝛕 of the 
parameter

❌ In 68% of the experiments the true value is the τ±̂ σ range

❌ There is 68% probability that the true value is in the τ±̂ σ range

Experiment → Random variable → Estimator → Result

100 simulated experiments with  
5% confidence intervals.



Frequentist Confidence interval
A confidence interval [µ1, µ2] is a member of a set, such that the set has the property that

⇒ Ensemble of experiments with a fixed unknown  𝜇

⇒ 𝜇1 and 𝜇2 depends on the measured x

⇒Intervals will contain the unknown true 𝜇 in fraction 𝛼 of experiments 

⇒  If it holds for every allowed 𝜇 the intervals cover  𝜇 with 𝛼 confidence (“correct coverage”)

⇒ If for any value of  𝜇 for which P(𝜇 ∈ [𝜇1,𝜇2]) <  𝛼  then the intervals undercover this 𝜇 

⇒ If for any value of  𝜇 for which P(𝜇 ∈ [𝜇1,𝜇2]) >  𝛼  then the intervals overcover this 𝜇 

⇒ Conservative intervals - only overcover. The price : loss of power in rejecting false hypothesis

● Frequentist: [µ1, µ2] contains the fixed, unknown µt in a fraction α of hypothetical experiments 
● Bayesian: the degree of belief that µt is in [µ1, µ2] is α 
● These views can correspond, but they don’t have to



Method of constructing confidence intervals with the desired level of coverage

Neyman construction (of “Neyman Belt”)

𝜃 = 0
x

P(
x|
𝜃)

x1              x2

𝛼/2𝛼/2
1-𝛼

x

P(
x|
𝜃)

x1              x2

𝛾𝛽
1-𝛼

x1         x2  



Method of constructing confidence intervals with the desired level of coverage

Neyman construction (of “Neyman Belt”)

𝜃 = 1
x

P(
x|
𝜃)

x1           x2

1-𝛼



Method of constructing confidence intervals with the desired level of coverage

Neyman construction (of “Neyman Belt”)

𝜃 = 2
x

P(
x|
𝜃)

x1           x2

1-𝛼



Method of constructing confidence intervals with the desired level of coverage

Neyman construction (of “Neyman Belt”)

𝜃2

𝜃1

X0



Example for Neyman construction
Constructing a 90% two sided interval for a normal gaussian distributed random variable:

⇒ ⍺=1-0.9=0.1. We’ll take 0.05 from each side.

⇒ For 𝜇=0 the relevant PDF is normal:

● X2=Z_0.95 = scipy.stats.norm.ppf(.95)= 1.64
● X1=Z_0.05= - 1.64

⇒ For 𝜇=1 the relevant PDF shifts by 1:

X1=-0.64, X2=2.64

etc…



Example for Neyman construction
Constructing a 90% two sided interval for a normal gaussian distributed random variable with 
know width, and unknown mean 𝜇≥0 :

⇒ ⍺=1-0.9=0.1. We’ll take 0.05 from each side.

⇒ For 𝜇=0 the relevant PDF is normal:

● X2(Z=0.95) = scipy.stats.norm.ppf(.95)= 1.64
● X1(Z=0.05)= - 1.64

⇒ For 𝜇=1 the relevant PDF shifts by 1:

X1=-0.64, X2=2.64

etc…



Example for Neyman construction
Constructing a 90% upper limit interval for a normal gaussian distributed random variable:

⇒ ⍺=1-0.9=0.1. We’ll take 0.1 from each side.

⇒ For 𝜇=0 the relevant PDF is normal:

● X1(Z=0.1) = scipy.stats.norm.ppf(.1)= -1.28

⇒ For 𝜇=1 the relevant PDF shifts by 1:

X1=-0.28,

etc…



Neyman construction: Try it yourself
Construct Neyman belt for poisson with constant background of Nb=3



Flip flopping
● If more than 3 sigma: Discovery!
● If between 0 and 3 sigma: Limit!
● If less than 0: Set it to 0!

For 𝜇=2⇒ X1=2-1.28 , x2=2+1.64



Feldman-Cousins
Likelihood ratio ordering principle
Based on the likelihood ratio:

𝜇best  is the (physically allowed) value that maximizes p(x|µ) for that specific x . 

For fixed µ, add values of x to the interval from higher to lower R until the desired probability 
content is realized.

For an only positive gaussian gaussian: 

if  x≥0 then 𝜇 ̂=x ⇒ 

If x<0 then  𝜇 ̂=0⇒ 



Type I and Type II errors
Type I

Reject the null when it is actually true/

The probability for this is the “significance level”

(” P-Value”, “alpha”). 

We can choose it to be as small as we wish

Type II

Fail to reject the null when it is wrong/

If the probability of this to happen is beta,

Then “1-beta” is called “the power”

H0 is True H0 is False

Don’t reject H0 ✅ Type  II error 𝛽

Reject H0 Type  I error  𝛼 ✅



Significance and power

⍺=P(type I error)=P(reject H0 when it is true)

🡪
RejectAccept

Alternative / Null

The power (1-𝛽)

RejectAccept

𝛼

Hypothesis

The Significance

🡪=P(type II error)=P(fail to reject H0, when it is false) 

● Significance - The probability to reject H when it is true
● Confidence level  = (1-𝛼)* 100% 
●  Type I and Type II are related - when one increase, the other decrease

Neyman-Pearson Lemma - The likelihood-ratio test 
statistics is the most powerful test for a given significance 
level (alpha) . Any other test will have less power



🡪

Reject H0

Alternative / Null
g(t|H1)

The power

Accept H0

𝛼

Hypothesis
g(t|H0)

tcut

Critical regionAcceptance region





P-value
● P-value = Probability that a test statistic will take on a 

value that is at least as extreme as the observed value 
when the null hypothesis H0 is true

 ⇒ If P-value > α , fail to reject H0 at significance level α; 

 ⇒ If P-value < α , reject H0 at significance level α. 

● Equivalently use significance, Z, defined as equivalent 
number of sigmas for a Gaussian fluctuation in one 
direction: 





THE EVOLUTION OF LIMITS SETTING

Region Of Interest

1D UnBinned extended PLR

nD UnBinned extended PLR
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Region Of Interest

1D UnBinned extended PLR

nD UnBinned extended PLR

THE EVOLUTION OF LIMITS SETTING

143



Region Of Interest

THE EVOLUTION OF LIMITS SETTING
XENON

1D UnBinned extended PLR

nD UnBinned extended PLR
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60Co and 232Th sources

241AmBe

DETECTION PRINCIPLE
DISCRIMINATION VARIABLES

Electronic recoil

Nuclear recoil



XENON10 2005-2007

 “However, the uncertainty of the estimated number of leakage events for each energy bin in the 
analysis of the WIMP search data is currently limited by available calibration statistics. Based on the 
analysis of multiple scatter events, no neutron induced recoil event is expected in the single scatter 
WIMP-search data set. To set conservative limits on WIMP-nucleon spin-independent cross section, we 
consider all ten observed events, with no background subtraction. “

Region Of Interest

146



● s1,s2:

- Energy scale

- Discrimination: ER vs. Nr (s1/s2) 

● Vertex reconstruction

- Fiducialization

- Single vs. Multiple scatters

● Waveforms

● Event epoch time

● Slow control (detector stability) 147

WHAT DO WE LEARN FROM A TPC EVENT? 

Points – Measured events
Red/Gray – Neutron calib 
band

99.75% ER rejection bench mark

97% NR 

LINE

Phys. Rev. Lett. 109,181301 
(2012)

Illustrated by XENON100 2011/2012 data set 
225 Live days

Bold – below 99.75 ER line (likely to be NR)
   dots – above 99.75 ER line (likely to be ER)



Region Of Interest

Binned extended PLR

UnBinned extended PLR

THE EVOLUTION OF LIMITS SETTING
XENON

148

Introducing: 
1. Larger “region of interest”
2. Background model
3. Profile Likelihood to account for modelling uncertainties
4. Bins to account for limited calibration info
5. Asymptotic inference

11.7 days analysis limit improved by   × ~2



THE LIKELIHOOD FUNCTION

Poisson
term

Model
term

Ancillary
term

Calib
term

   

  The guardians
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THE LIKELIHOOD FUNCTION

Poisson
term

Model
term

Ancillary
term

Calib
term

  The guardians
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Some (hopefully) good reasons to take it slowly:

� Limited knowledge – risk of under/over coverage

○ Limited calibration

○ Lack of model

○ Always risk of mis-modeling

🡪Not needed

○ The additional information / resolution is not needed

🡪Save on resources

○ Modeling and minimizing. Asymptoticness (checks or bypass)

    Required cpus, diskspace, people, nerves, sanity

THE LIKELIHOOD FUNCTION

Poisson
term

Model
term

Ancillary
term

Calib
term

  The guardians
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HOW MANY BINS TO USE?

152



Parameter of interest: 
Ns – total number of signal events

Nuisance parameters: 
Nb – background events
εs

i, εb
i – distribution along bands of sig/bck

tLeff – deviation of Leff from median

Poisson on calibration 
data

Leff penalty

Distribution of events in 
each band

Poisson on data, per 
band. 

XENON’S 1ST  LIKELIHOOD FUNCTION

153



XENON1T - PLR RESULTS-
1TON-YEAR 2018 ANALYSIS

154

Introducing…
• PDFs in higher dimensions (s1,s2,r). No bands in s2.
• Larger volume used
• 4 independent background models constraint by calibration and simulation
• More nuisance parameters
• More complete interaction model
• More sophisticated background model with some a-priori fits
• Safeguard to account for some mis-modeling



SOME THOUGHT ON SIGNAL MODEL

● Signal model sets: fs  and  ns(σ) and (εs )

● Don’t forget our parameter of interest is σ ( not ns)

● Energy scale: pe🡪🡪kevnr

● Nuisance parameters in astrophysical model, interaction model, detector response 

● No calibration sample available 

(calibration data can be used to constraint parameters) 

● Need to artificially incorporate spatial and temporal detector instabilities 155



SOME THOUGHT ON BACKGROUND MODEL
● Background  model sets: fb (εb ) and   sometimes Nb

● Several components of background: Fractions can be “frozen” or be nuisance

● Shape and magnitudes modeling

● Calibration samples may exist –  statistic decreases with #variables

● Is our background model accurate “enough”?
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● Too many parameters

● Hidden parameters

● Partial underlying model

● ….Mistakes…

Might lead to enhanced false discovery  rate or overly constrained limits

The curse of background mismodelling
The problem
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Arxiv:1610.02643

The curse of background mismodelling
The problem



● Use the benchmark model

● Do not add extra nuisance parameters 

● Works for limits and discoveries

● Safeguards background components that are based on calibration

● We found out that a similar technique used for cross checks in the LHC,  
“spurious signal”

Arxiv:1610.02643

The curse of background mismodelling
The problem



EXAMPLE 1:“THE CURSE OF MISMODELLING”

The “safeguard” can provide some protection for models constructed based on calibration samples. 

Nuisance parameters can be added, but 

– Require some model assumption

- Complicates analysis – heavier, slower

It is not enough

WHERE IT HURTS…
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● Include nuisance parameters  without an  underlying model

● Non physical regions

● Non symmetric nuisance uncertainties

E.G. Leff

EXAMPLE 2:“THE CURSE OF THE UN-MODELLED”

WHERE IT HURTS…

161Phys. Rev. C 84, 045805 (2011)



Ncalib=151280Ncalib=151 Ncalib=15128

WHERE IT HURTS…
EXAMPLE 3:“THE BLESSING OF ASYMPTOTICNESS”

 (Or “we ♥ wilks & arxiv1007.1727”)

162Need to verify asymptoticness and run MC if broken

Low bg



Generating multidimensional (s1,s2,r,z…)  pdf maps  for “many” nuisance parameters variations

● Algorithm: 

Prepare a model bank ahead of time

Or build the necessary model during minimization

(Possibly with smart book keeping and archiving)

● Nuisance parameter resolution

How large a step in modeling

Interpolate?

● Verifying asymptoticness or doing mc instead becomes painful

● Also: complicated codes

EXAMPLE 4:“THE CURSE OF MULTIPLE DIMENSIONS”

WHERE IT HURTS…
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WIMP model
 [KeV]

for a given wimp mass, calculate differential 
rate in KeV, Translate to PE using average 
light yield. Poisson smear, Gauss smear, 
apply acceptances, 

fs(cS1) pdf

Correct S1 according to LCE(x,y,z): scale up or 
down the total PE measured to get number of 
PE we should have gotten with a uniform light 
collection efficiency

Data points in cS1

S1
 [PE]

Likelihood 
function

Loop on all events in each band. For each event, use 
its cS1 to check how likely it is to come from the signal 
pdf, or background pdf.

Problem: cS1 is not physical. Low PE cut, Poisson smearing should be done on s1!

WHERE IT HURTS…
EXAMPLE 5:“THE CURSE OF HANDWAVING”
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e.g. Over coverage:

• Power constraint

• Cls (Roughly 90%CL🡪95%CL)

• Ce la vie

WHERE IT HURTS…
EXAMPLE 6:“THE CURSE OF DIVERSITY”
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WHERE IT HURTS…
EXAMPLE 7:“THE CURSE OF PAGE LIMIT”
• Many details to the models, inference method…

• Information in papers is limited. Very often summarized to: “…as was done in 
[xx].”

• Would be nice to see more detailed likelihood functions…

• Would be nice to see more likelihood curves…

• Many consistency checks, verifications to be made .  usually not even explicitly 
acknowledged.

• Follow up papers become more popular, but

…cannot make everyone happy….

PhysRevLett.120.132501



Back then....

Oh Deep Statistical 
inference, we want you to 
tell us the answer Our DM limit in  a 

similar method to 
[17].

Grad 
students 
later...

Deep Monte Carlo, do you 
have the answer? 42 x10-49

The limit  on the DM 
scattering 
cross-section  in  a 
similar method to 
[17].
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GRAPHICAL SUMMARY

Thanks to Yossi Mosbacher


