Scintillating Crystals for Dark Matter

Riccardo Cerulli INFN-Roma Tor Vergata GSSI - June 22, 2022

OUTLINE

- Basic arguments on crystal scintillators (scintillation processes, light output, decay time, light collection, light readout)
- PMT: basic concepts, QE, low noise, low radioactivity features
- Light Guide and light collection
- Crystal scintillators for underground physics
- Example of rare processes successfully studied with crystal scintillators
- Crystal Scintillators for Dark Matter investigation
- Dark Matter Signatures for scintillators (diurnal, annual modulation, directionality)
- NaI(Tl) scintillators for Dark Matter: DAMA, ANAIS, KIM, SABRE, COSINE
- ZnWO₄; anisotropic scintillators, the directionality as a signature for Dark Matter with ZnWO₄
- New promising crystal scintillators for the future: CHC, CZC, SrI

Scintillators

- Scintillator:
 - a material that converts the kinetic energy of radiation passing throw into detectable light (scintillation light)
 - conversion must be efficient (good light yield)
 - the scintillation light has to «escape» from the material (no self absorption) and effectively collected
 - scintillation wavelength and decay time are important issues
 - the collected light is converted in <u>electronic signal</u> (light sensor at room temperature: PMT, APD, SiPM)
 - the material should have good optical properties, be easy to machine and to obtain in large size
 - material refractive index close to the glass one (1.5)

Scintillators

Classification:

• Organic scintillators:

 aromatic hydrocarbon compounds containing benzene-ring structures; crystals, liquids, plastics;

 \rightarrow see G. Ranucci talk

- Inorganic scintillators:
 - mainly alkali halides crystals containing a small activator impurity;
 - Nal(Tl), BGO, Csl(Tl), CaF₂, BaF₂, CdWO₄, ZnWO₄,
 Srl, LaCl₃, CHC, CZC, etc.

ZnWO

Scintillation Process

- Conduction band, valence band and forbidden band
- Presence in the forbidden band of activator centres due to the impurities added to the crystal; they produce "traps" for electron in the crystal lattice
- Energy released by radiation produces free e⁻/hole going from valence to conduction band;
- Holes can ionize impurity atoms and free electrons can fall into this state and later decay to ground state emitting visible photons (energy < band gap)

Scintillation Process

- Visible light is emitted with a characteristic efficiency that depends on the crystal and radiation (light output or light yield); process with non-visible photons production can occur
- Medium is generally transparent to the emitted light because the activator transition energy is smaller than the energy to produce e-/hole
- The light emitted by a scintillator has a characteristic spectrum

Light output and temperature dependence

• Birk's formula: light output per unit length

$$\frac{dL}{dx} = \frac{A \frac{dE}{dx}}{1 + kB \frac{dE}{dx}}$$

A – absolute scintillation efficiency;
 kB – determined fitting data; for the same scintillator it depends on particles

- Proposed for organic can be used in some energy range also for inorganic crystals
- The non-linearity wrt Energy released per unit length is due to quenching interactions
- Light output in inorganic has a temperature dependence

Scintillation decay time and Pulse Shape Discrimination

- Light emission can have more than one time decay component (fast, f; slow, s)
- Decay components depend on *dE/dX*
- Some scintillators have different decay components for different interacting particles ⇒ scintillation pulse shows different shape (PSD)

In alkali halides this depends on the density of free electrons and holes produced in the ionization process: high density (heavy particle) favours fast component

- Discrimination between γ/α and recoiling nuclei
- PSD very effective at MeV energy range

Time evolution of scintillation (*N* – number of emitted photons)

$$N = A \exp\left(\frac{-t}{\tau_{\rm f}}\right) + B \exp\left(\frac{-t}{\tau_{\rm s}}\right)$$

Properties of some Inorganic Scintillators

- Commonly used for spectroscopy
- Known since long time
- Various nuclei (high, low mass)
- Different time response

Table 8.3 Properties of Con	mmon Ino	rganic Scintillato	ors				
						Relative Pulse	
	Specific	Wavelength of	Refractive		Abs. Light Yield	Height Using	
	Gravity	Max. Emission	Index	Decay Time (µs)	in Photons/MeV	Bialk. PM tube	References
Alkali Halides							
NaI(Tl)	3.67	415	1.85	0.23	38 000	1.00	
CsI(Tl)	4.51	540	1.80	0.68 (64%), 3.34 (36%)	65 000	0.49	78, 90, 91
CsI(Na)	4.51	420	1.84	0.46, 4.18	39 000	1.10	92
Li(Eu)	4.08	470	1.96	1.4	11 000	0.23	
Other Slow Inorganics							
BGO	7.13	480	2.15	0.30	8200	0.13	
CdWO ₄	7.90	470	2.3	1.1 (40%), 14.5 (60%)	15 000	0.4	98–100
ZnS(Ag) (polycrystalline)	4.09	450	2.36	0.2		1.3"	
CaF ₂ (Eu)	3.19	435	1.47	0.9	24 000	0.5	
Unactivated Fast Inorganic	s						
BaF ₂ (fast component)	4.89	220		0.0006	1400	na	107-109
BaF ₂ (slow component)	4.89	310	1.56	0.63	9500	0.2	107-109
CsI (fast component)	4.51	305		0.002 (35%), 0.02 (65%)	2000	0.05	113115
CsI (slow component)	4.51	450	1.80	multiple, up to several µs	varies	varies	114, 115
CeF ₃	6.16	310, 340	1.68	0.005, 0.027	4400	0.04 to 0.05	76, 116, 117
Cerium-Activated Fast Ino	rganics						
GSO	6.71	440	1.85	0.056 (90%), 0.4 (10%)	9000	0.2	119–121
YAP	5.37	370	1.95	0.027	18 000	0.45	78, 125
YAG	4.56	550	1.82	0.088 (72%), 0.302 (28%)	17 000	0.5	78, 127
LSO	7.4	420	1.82	0.047	25 000	0.75	130, 131
LuAP	8.4	365	1.94	0.017	17 000	0.3	134, 136, 138
Glass Scintillators							
Ce activated Li glass ^b	2.64	400	1.59	0.05 to 0.1	3500	0.09	77, 145
Tb activated glass ^b	3.03	550	1.5	~3000 to 5000	~50 000	na	145
For comparison, a typical o	rganic (pl	astic) scintillator	:	•			
NE102A	1.03	423	1.58	0.002	10 000	0.25	
for alpha particles							

^bProperties vary with exact formulation. Also see Table 15.1.

Source: Data primarily from Refs. 74 and 75, except where noted.

Light collection

- Largest possible fraction of scintillation light has to be collected
- Limiting factors: auto-absorption and loss at surface between crystal and encapsulating material, optical window, PMT (reflection)

$$\theta_c = \sin^{-1} \frac{n_1}{n_0}$$

critical angle for reflection; n_0 – refraction index of scintillator

- If the light angle of incident is greater (smaller) than θ_c total (partial) internal reflection (and partial transmission) occurs; scintillators surrounded by a reflector
- Presence of light guide (transparent solid) from crystal to PMT limits light collection

Light readout

Scintillation light is collected and converted into electric signal:

- PMT, widely used (cost, dimension performances)
- APD made with semiconductor photodiodes, small surface, interesting for medical use (PET scanner)
- SiPm, arrays of APDs operating in Geiger Mode, low voltage, insensitive to magnetic field, compact but low gains, large noise at
 room temperature, cost/cm²

Photomultiplier Tube

- Photocathode made by photosensitive material converts scintillation photons into electrons; semiconductor material with alkali metals; multialkali material based on compound of Na₂KSb or K₂CsSb (bialkali)
- Electron collection system + an electron multiplier section (dynodes at different voltage)
- Anode collect electrons \Rightarrow signal
- All parts are inside a glass tube in vacuum

Main characteristics of a PMT • Quantum Efficiency (*QE*), sensitivity of photocathode: number of photoelectrons emitted $QE(\lambda) =$

number of incident photons (λ)

QE depends on λ and it is typically 20-30%

- Gain depends on secondary emission factor of dynodes (δ); it can arrive up to 10⁷
- Noise and single ph. electron spectrum (peak/valley ratio)
- Dark current in cps
- Time response (rise time, transit time, transit time spread)

W.R. Leo, Techniques for Nuclear and Particle Physics Experiments

Crystal Scintillators for underground physics

various target materials (low and high mass nuclei)

high detection efficiency for gamma/electrons

compact

chemical and mechanical stability

high light yield \Rightarrow energy thresholds from keV

stable with time

good energy resolution

control of the energy scale

uniformity of the detector response

PSD for gamma/alpha (recoil)

- high level of radiopurity to reach very low intrinsic background
- shielding by external environmental radiation (muons, neutrons, gammas, ...)

Crystal Scintillators for underground physics

Inorganic scintillators have been successfully employed for rare processes search since the very beginning of the field:

- DM investigation (NaI(Tl), CaF₂, LXe, CsI(Tl))
- Double beta decay experiments (long list, see later)
- Solar axions (NaI(Tl), LiF, CsI(Tl))
- Exotic Matter search (NaI(Tl))
- Nuclear rare processes (rare α decay, cluster decay, superdense nuclear matter)

Developments of Inorganic scintillators with promising features still ongoing (ZnWO₄, SrI, CHC, CZN, etc.)

Intrinsic Radiopurity in Crystal Scintillator Detectors

• In inorganic scintillators presence of:

○ ²³²Th, ²³⁸U and ²³⁵U families and ⁴⁰K,

 cosmogenic and/or anthropogenic radionuclides

• Some scintillators contain elements with radioactive isotopes; e.g.:

 \circ ¹¹³Cd in CdWO₄

◦¹³⁷Cs in CsI(Tl)

Achieving high radiopurity relies on a highly specialized experience and a long, delicate work (different phase, devoted measurements, many trials)

Intrinsic Radiopurity in Crystal Scintillator Detectors

- Procedures and protocols for the project/storage/cleaning/installation of the experiment, to reach high radio-purity level.
- Deep experience on the measurements and analysis techniques

positive outcome: improvement in radio-purity

- Pre-selection and analyses of materials (e.g. powders)
- Selection of growing processes
- Selection of additives
- Investigation on radioactive contaminants
- Chemical/physical purification of selected materials
- Growing protocols
- Identification of the optimal procedures and tools for crystal processing
- Selection of housing and materials in the surrounding environment
- Underground tests

production of detectors

See e.g. Instruments 2021, 5, 16; Physics 2021, 3, 187

Measurement techniques of radioactive contaminations See e.g. Instruments 2021, 5, 16; Physics 2021, 3, 187

- ULB HP-Ge detectors, spectrometry: maximal sensitivity mBq/kg for U, Th, K; no sensitive to internal α contamination
- Atomic Absorption Spectrometer (AAS); wavelengths of light absorbed by the different elements are used to evaluate their concentrations in the solutions: good sensitivity (at ppb, sub-ppb level)
- Inductively Coupled Plasma Mass Spectroscopy (ICP-MS): mass-to-charge ratio (m/e) is used to identify the isotopes (no sensitive to short half-lives isotopes); peaks in the mass spectrum have an intensity proportional to the isotope concentration (²³²Th up to : ~ (0.8 – 0.008) mBq/kg, 238 U up to ~ (2–0.02) mBq/kg; 40 K activity ~ (0.3 – 6) mBq/kg)

final low background measurement can assure the highest sensitivity to the identification of the internal contaminants (high detection efficiency, for α and β particles)

Typical low background scintillation set-up

- Scintillators
- PMT: low background photomultiplier tubes; noise rejection at low energy (efficiencies)
- Light-guide to shield the scintillator from radioactivity of photomultiplier tubes (typically, the most contaminated materials of the set-up)
- Light guides made of a scintillation material with different (relative to the main scintillation detector) scintillation decay time can serve as active anticoincidence detectors
- Passive shield: layers of Lead, Copper, Neutron moderator (PE), Cadmium
- Set-up in Nitrogen atmosphere to suppress environmental Radon
- Active shield: shield counters surrounding the main detector, anti-muon veto counters;
- background suppression by using data on time of arrival and pulse-shape of scintillation signals

Intrinsic Radiopurity in Crystal Scintillator Detectors: a comparison for NaI(Tl)

	Table 7, Radioactive contamination of NaI(TI) crystal scintillators.									
		Activity (mBq/kg) in sample, Reference								
Chain	Source	3.5 kg Ref. 224 UK DM	10.7 kg, Refs. 246 and 247 12.5 kg, Refs. 248–250 ANAIS	$9.7 \text{ kg} \times 25$ Ref. 209 DAMA/LIBRA	$\bigcirc 72 \times 72 \text{ mm}$ Refs. 251, 252 PICO-LON	3.4 — 9.6 kg Refs. 253–255 KIMS-Nal	8.47 kg Ref. 256 DM-Ice17	2 kg Ref. 257 SABRE	8 – 18 kg Ref. 258 COSINE-100	
	${}^{3} m H$ ${}^{22} m Na$ ${}^{24} m Na$ ${}^{40} m K$ ${}^{85} m Kr$ ${}^{87} m Rb$ ${}^{129} m I$		0.2 1.1 - 21 0.94	< 0.09 < 0.015 < 0.00026 0.6 < 0.01 < 0.3 0.95(6)	81(7)	0.8 - 1.5	17	0.3 < 0.09	0.5 - 2.5	
²³² Th	²³² Th ²²⁸ Ra ²²⁸ Th ²¹⁶ Po	0.014	0.0007 - 0.004 0.02	0.0085(5) 0.002 - 0.03	0.002 - 0.24 0.013(8)	0.0008 - 0.04	$\begin{array}{c} 0.01 \\ 0.16 \\ 0.17 - 0.18 \end{array}$	< 0.004	< 0.001 - 0.01	
²³⁸ U	^{238}U ^{234}U ^{226}Ra ^{210}Pb ^{210}Po	< 0.005 0.045	2.7 - 10 0.2 0.7 - 3.15 0.6	$\begin{array}{c} 0.0044(7) \\ 0.0158(16) \\ 0.0217(11) \\ 0.0242(16) \end{array}$	< 0.0005 - 0.52 0.105(17) 0.03 - 9.6	< 0.0002 - < 0.015	$\begin{array}{c} 0.017 \\ 0.14 \\ 0.93 - 0.96 \\ 1.5 \end{array}$	< 0.01	< 0.0002 - < 0.0015	
Total o	α activity		0.58 - 3.15	≈ 0.08		0.48 - 3.29			0.74 - 3.20	

From IJMPA 33, No. 09, 1843007 (2018)

Intrinsic Radiopurity in Crystal Scintillator Detectors: a comparison

Table	15. Radioac	tive containin	ation of n	lagnesium	(Nigw04), calcium	1 (CaWO ₄), zinc (Z	(10004) and		gstate crystal sci	numators.	
		Activity (mBq/kg) in sample, Reference									
Chain	Source	$MgWO_4$			$CaWO_4$		ZnWO_4			$PbWO_4$	
		0.9 g Ref. 216	54 g Ref. 268	189 g Ref. 155	328 — 740 g Ref. 196	155 — 310 g Refs. 269, 270	163 g Ref. 192	117 — 699 g Ref. 156	182 g Ref. 271	454 g ^b Ref. 161	
	${}^{40} m K$ ${}^{65} m Zn$ ${}^{90} m Sr-{}^{90} m Y$ ${}^{137} m Cs$ ${}^{147} m Sm$	$< 1.6 \times 10^{3}$ $< 1.5 \times 10^{3}$ < 540	< 100 < 10 6(2)	< 12 < 70 < 0.8 0.49(4)	< 21 < 26	< 20 < 1.2	< 321	< 0.02 0.5(1) - 0.8(2) < 0.1 < 0.05 < 0.01		0.007(5)	
²³² Th	$^{232}_{228} {\rm Ra}_{228}_{\rm Ac}_{\rm C}_{\rm 228}_{\rm Th}_{\rm 212}_{\rm Pb}_{\rm 212}_{\rm Bi}_{\rm In}$	< 280 < 50	< 0.2 < 40 < 30 < 200 < 80	0.69(10) 0.6(2)	< 9 < 6	0.009(2) < 2.1, 0.015(4) < 1.6	< 125 < 316 < 267	< 0.03 < 0.02 0.002(2) - 0.018(2)	< 13	0.051(8)	
$^{235}\mathrm{U}$	$^{235}{}_{\rm U}_{\rm 227_{Ac}}_{\rm 211_{Pb}}$			1.6(3)		0.040(4) 0.098(20)	< 3610 < 162	< 0.003 - 0.011(3)			
$^{238}\mathrm{U}$	$\begin{array}{r} 238_{\rm U}\\ 238_{\rm U}+^{234}_{\rm U}\\ 234_{\rm m}_{\rm Pa}\\ 234_{\rm U}\\ 230_{\rm Th}\\ 226_{\rm Ra}\\ 214_{\rm Pb}\\ 214_{\rm Bi}\\ 210_{\rm Pb}\\ 210_{\rm Po}\\ \end{array}$	< 50 $< 2.4 \times 10^{3}$ $5.7(4) \times 10^{3}$	40(4) < 400 < 7(2) < 100 < 80 900(70) 780(20)	14.0(5) 5.6(5) < 430 291(5)	38(14) - 330(17) $4(2) - 107(11)$ $< 190 - 4800(200)$ $26(9) - 1316(17)$	< 68, 1.01(2) 1.08(3) 0.056(5) < 2.2 - 58, 0.04(1) 0.047(5) 0.018(4)	< 560 $< 30 \times 10^{3}$ < 115 < 159	< 0.08 < 0.07 0.002(1) - 0.025(6) < 0.01	< 10 (53 - 79) × 10 ³	< 0.01 < 0.007 0.178(15) 1.403(43) 186(1)	
Total	α activity		930^{a}	400	240(20) - 1400(30)	1.2 - 107, 3.08(4)		0.18(3) - 2.3(2)			

^aEstimated from the spectra presented in Fig. 13 of Ref. 268.

^bPbWO₄ crystal produced from archaeological lead.

External radioactive contamination

 Contamination of PMT: devoted PMT R&D (glass, metallic, etc.), development and selection

	²²⁶ Ra	235 U	238U	²²⁸ Ra	²²⁸ Th	²³² Th	⁴⁰ K
	(mBq/PMT)	(mBq/PMT)	(mBq/PMT)	(mBq/PMT)	(mBq/PMT)	(mBq/PMT)	(mBq/PMT)
DAMA	65	7		18	12		81
ANAIS	67		180			22	115

- Lead: use of lead with low concentration of ²¹⁰Pb; low radioactivity lead present in the market (Plumbum, Boliden, etc.) with activity <few-150 Bq/kg; archeological lead (<few mBq/kg)
- Copper: OFHC copper, low level of contamination (<0.5 ppb for ²³⁸U, <0.6 ppm for ²³²Th, <0.06 ppm for ^{nat}K)
- Other material: need for dedicated measurements

2β decay experiment with crystal scintillators

- First neutrinoless double decay experiment to search for ⁴⁸Ca with crystal scintillator in 1966 (CaF₂(Eu)) [der Mateosian and Goldhaber]
- Big number of scintillation materials contain double β active isotopes (source=detector approach)
- Presently many experiments use crystal scintillators ⇒ very competitive results
- 2β⁺ decay can be investigated with anticoincidence technique with 511 keV gammas
- Also hybrid technique in combination with bolometric measurement (see P. Gorla lecture)

2β transition	Scintillator	Main results: half-life (channels)
$^{40}Ca \rightarrow ^{40}Ar$	$CaWO_4$	$\geq 9.9 \times 10^{21} \text{ yr} (2\nu 2K)$
	$CaWO_4$	$\geq 1.4 \times 10^{22} \text{ yr } (0\nu 2\varepsilon)$
$^{46}Ca \rightarrow ^{46}Ti$	$CaF_2(Eu)$	$\geq 1.0 \times 10^{17} \text{ yr } (0\nu 2\beta^{-})$
$^{48}Ca \rightarrow ^{48}Ti$	$CaF_2(Eu)$	$\geq 5.8 \times 10^{22} \text{ yr} (0\nu 2\beta^{-})$
70 Zn \rightarrow ⁷⁰ Ge	$ZnWO_4$	$\geq 3.8 \times 10^{18} \text{ yr} (2\nu 2\beta^{-})$
	$ZnWO_4$	$\geq 3.2 \times 10^{19} \text{ yr} (0 \nu 2 \beta^{-})$
⁶⁴ Zn→ ⁶⁴ Ni	$ZnWO_4$	$\geq 1.1 \times 10^{19} \text{ yr} (2\nu 2K)$
	$ZnWO_4$	$\geq 9.4 \times 10^{20} \text{ yr} (2 \nu \varepsilon \beta^+)$
$^{82}\text{Se}\rightarrow^{82}\text{Kr}$	Zn ⁸² Se	$\geq 2.4 \times 10^{24} \text{ yr } (0\nu 2\beta^{-})$
$^{100}Mo \rightarrow ^{100}Ru$	$ZnMoO_4$	= $[7.15 \pm 0.37 (\text{stat.}) \pm 0.66 (\text{syst.})] \times 10^{18} \text{ yr } (2\nu 2\beta^{-})$
	$Li_2^{100}MoO_4$	= $[6.90 \pm 0.15 (\text{stat.}) \pm 0.37 (\text{syst.})] \times 10^{18} \text{ yr} (2\nu 2\beta^{-})$
	$Li_2^{100}MoO_4$	$\geq 7.0 \times 10^{22} \text{ yr } (0\nu 2\beta^{-})$
	^{48depl} Ca ¹⁰⁰ MoO ₄	$\geq 4.0 \times 10^{21} \text{ yr } (0\nu 2\beta^{-})$
$^{106}Cd \rightarrow ^{106}Pd$	$^{106}CdWO_4$	$\geq 1.1 \times 10^{21} \text{ yr} (2\nu\varepsilon\beta^+)$
	$^{106}CdWO_4$	$\geq 2.2 \times 10^{21} \text{ yr } (0 \nu \varepsilon \beta^+)$
$^{108}Cd \rightarrow ^{108}Pd$	$CdWO_4$	$\geq 1.1 \times 10^{18} \text{ yr} (2\nu 2K)$
	$CdWO_4$	$\geq 1.0 \times 10^{18} \text{ yr } (0\nu 2\varepsilon)$
$^{114}Cd \rightarrow ^{114}Sn$	$CdWO_4$	$\geq 1.3 \times 10^{18} \text{ yr} (2\nu 2\beta^{-})$
	$CdWO_4$	$\geq 1.1 \times 10^{21} \text{ yr } (0 \nu 2 \beta^{-})$
$^{116}Cd \rightarrow ^{116}Sn$	$^{116}CdWO_4$	$= [2.69 \pm 0.02 (\text{stat.}) \pm 0.14 (\text{syst.})] \times 10^{19} \text{ yr } (2\nu 2\beta^{-})$
	$^{116}CdWO_4$	$\geq 2.4 \times 10^{23} \text{ yr } (0 \nu 2 \beta^{-})$
136 Xe \rightarrow 136 Ba	Xenon-loaded	$= [2.21 \pm 0.02 (\text{stat.}) \pm 0.07 (\text{syst.})] \times 10^{21} \text{ yr } (2\nu 2\beta^{-})$
	liquid scintillator	$\geq 1.07 \times 10^{26} \text{ yr } (0\nu 2\beta^{-})$
$^{130}\text{Ba}{\rightarrow}^{130}\text{Xe}$	BaF_2	$\geq 1.4 \times 10^{17} \text{ yr } (0 \nu \varepsilon \beta^+)$
$^{136}\text{Ce} \rightarrow ^{136}\text{Ba}$	$CeCl_3$	$\geq 3.2 \times 10^{16} \text{ yr} (2\nu 2K)$
$^{160}Gd \rightarrow ^{160}Dy$	$Gd_2SiO_5(Ce)$	$\geq 1.9 \times 10^{19} \text{ yr } (2\nu 2\beta^{-})$
	$Gd_2SiO_5(Ce)$	$\geq 1.3 \times 10^{21} \text{ yr } (0\nu 2\beta^{-})$
$^{180}W\rightarrow ^{180}Hf$	$CaWO_4$	$\geq 3.1 \times 10^{19} \text{ yr } (2\nu 2K)$
188 188	$CaWO_4$	$\geq 9.4 \times 10^{18} \text{ yr } (0\nu 2\varepsilon)$
$^{186}W\rightarrow ^{186}Os$	$ZnWO_4$	$\geq 2.3 \times 10^{19} \text{ yr} (2\nu 2\beta^{-})$
	¹¹⁶ CdWO ₄	$\geq 1.1 \times 10^{21} \text{ yr } (0\nu 2\beta^{-})$

 $[2.630\pm0.011(stat)^{+0.113}-0.123}(sys)\times10^{19} yr]$

 $(2\nu 2\beta^{-})$

Example of $2\beta^{-}$ decay experiment with crystal scintillators: the case of ¹¹⁶Cd

¹¹⁶Cd is one of the best isotopes to search for $2\beta 0\nu$ decay:

• $Q_{2\beta} = 2813.49(13)$ keV:

(a) > 2615 keV of 208 Tl;

(b) th. point of view: $\Gamma(2\beta 2\nu) \sim Q_{2\beta}^{11}$, $\Gamma(2\beta 0\nu) \sim Q_{2\beta}^{5}$

• favourable th. estimations of NMEs for $2\beta 0\nu$

• quite high isotopic abundance δ = 7.512(54)% and availability of enrichment by centrifugation (cheap) in large amounts

Positive Results
for the $2\beta 2\nu$
decay

Experiment	Technique	T _{1/2} (10 ¹⁹ yr)	Year
ELEGANT V	¹¹⁶ Cd foils, drfit chambers, plastic scintillators	2.6 ^{+0.9} -0.5	1995
Solotvina	¹¹⁶ CdWO ₄ scintillators	2.7 ^{+0.5} - _{-0.4} (stat) ^{+0.9} - _{-0.6} (sys)	1995
NEMO-2	¹¹⁶ Cd foils, track reconstruction by Geiger cells, plastic scintillators	3.75±0.35(stat)±0.21 (sys)	1995
Solotvina	¹¹⁶ CdWO ₄ scintillators	2.6±0.1(stat) ^{+0.7} - _{-0.4} (sys)	2000
Solotvina	¹¹⁶ CdWO ₄ scintillators	2.9±0.06(stat) ^{+0.4} -0.3(sys)	2003
NEMO-3	¹¹⁶ Cd foils, track reconstruction by Geiger cells, plastic scintillators	2.74±0.04(stat)±0.18 (sys)	2017
AURORA	¹¹⁶ CdWO ₄ scintillators	2.630±0.011(stat) ^{+0.113} -0.123(sys)	2018

Most precise $T_{1/2}$ measurement obtained with scintillators

Phys.Rev.D 98, 092007 (2018)

Example of $2\beta^-$ decay experiment with crystal scintillators: the case of 116 Cd

Most precise measurement of $2\beta 2\nu$ by AURORA Experiment at LNGS in DAMA/R&D set-up

- Two highly radiopure CdWO₄ enriched in ¹¹⁶Cd at 82% (1.162 kg)
- liquid scintillator in anticoincidence
- low radioactive shield
- α/β PSD, TA analysis, Bi-Po events identification

 $T_{1/2}(2\beta 2\nu)$ = (2.630 ± 0.011(stat)^{+0.113}_{-0.123}(sys))×10¹⁹ yr

$T_{1/2}(2\beta 0v) > 2.2 \times 10^{23} yr$

Phys.Rev.D 98, 092007 (2018)

Example of $2\beta^+$ decay experiment with crystal scintillators

- ¹³⁰Ba and ¹⁰⁶Cd 2β⁺ decay : coincidence of signal from the decay and subsequent gammas in adjacent detectors from e⁺ annihilation
- For ¹⁰⁶Cd 2β2ν decay T_{1/2} limit at level od 10²¹yr, in the region of theoretical expectation [experiment running, A. Leoncini et al. Phys. Scr. 97(2022)064006]

Rare processes search with crystal scintillators: the case of solar axion

- Solar Axion via Primakoff effect: coherent conversion of solar axions into photons in crystal lattice (g_{aγ})
- Searched for e.g. in NaI(Tl) scintillator in DAMA [PLB515(2001)6]; still most sensitive results with Bragg technique
- Other results e.g. from Cosine-100 on g_{ae} [Astrop.Phys. 114 (2020)]

Nature Physics 13, 584-590 (2017)

Dark Matter investigation with crystal scintillators

- Crystal scintillators have been exploited since the beginning for DM investigation
- Most important results have been obtained by DAMA/NaI and DAMA/LIBRA by employing Ultra-radiopure NaI(Tl)
- Other experiments in progress using NaI(Tl): ANAIS, COSINE (DM-ICE), SABRE, PICOLON
- Other interesting crystal scintillators considered:

 $_{\odot}$ CaF_2 (DAMA, Kamioka Observatory): SD coupling with Dark Matter particles $_{\odot}$ CsI(Tl) (KIMS)

Promising crystal scintillators for future experiments:
 <u>O ZnWO4, SrI,</u>

Dark Matter investigation with crystal scintillators: «traditional approach»

- Experimental vs Expected spectra (with or without e.m. component rejection)
- Several assumptions and modelling required ⇒ experimental and theoretical uncertainties generally not included in calculations
- Exclusion plot by fixing the model, all the assumptions and parameters

- No discovery potentiality
- Limitations in the recoil/background discrimination when applied
- Uncertainties in the exclusion plots and in comparisons (model dependent validity)

Dark Matter investigation with crystal scintillators: the nuclear quenching factor

- Quenching factor (q): ratio of the scintillation light measured for recoil and for electron of the same energy
- to be measured with neutron source or neutron generators
 - differences are often present in different experimental determinations of *q* for the same nuclei in the same kind of detector
 - e.g. in doped scintillators q depends on dopant and on the impurities/trace contaminants; in LXe e.g. on trace impurities, on initial UHV, on presence of degassing/releasing materials in the Xe, on thermodynamical conditions, on possibly applied electric field, etc.
 - Some time increases at low energy in scintillators (dL/dx)
 - \circ ... and more

Example in case of DAMA	Na	I	Recoil energy range (keVee)	
Same method	0.30(1)	0.09(1)	6.5–97 (Na) 22–330 (I)	Phys. Lett. B389(1996)757
l	0.4 ± 0.2	0.05 ± 0.02	5–100 (Na) 40–300 (I)	Phys. Rev. C47(1993)R425
semi-empirical Formula	from 0.65 to 0.55	from 0.35 to 0.17	2–100	Astrop. Phys. 33(2010)40

Quenching factor for Na and I

Dark Matter investigation with crystal scintillators: «traditional approach»

- Based on PSD between gamma and nuclear recoils
- Only statistical discrimination at low energy
- Limitation from systematics
- Uncertainties on exclusion plots

KIMS-CsI(Tl): 12 crystals (104.4kg)

Dark Matter investigation with crystal scintillators: «traditional approach»

- Even very small systematics in the data selections and statistical discrimination and rejection procedures can be difficult to estimate;
- e.m. component of the rate can contain the signal or part of it
- Even assuming pure recoil case and ideal discrimination on an event-by-event base, the result will NOT be the identification of the presence of WIMP elastic scatterings as DM signal, because of the well-known existing recoil-like indistinguishable background;

Therefore, even in the ideal case the "excellent suppression of the e.m. component of the counting rate" can not provide a "signal identification"

A model independent signature is needed

Dark Matter investigation with crystal scintillators: signature

 Diurnal modulation: daily variation of the interaction rate due to different Earth depth crossed by the Dark Matter particles ⇒ only for high σ

 Annual modulation: annual variation of the interaction rate due to Earth motion around the Sun at present the only feasible one, sensitive to many DM candidates and scenarios

The annual modulation: a model independent signature for the investigation of DM particles

With the present technology, the annual modulation is the main model independent signature for the DM signal. Although the modulation effect is expected to be relatively small a suitable large-mass, low-radioactive set-up with an efficient control of the running conditions can point out its presence.

Requirements

- 1) Modulated rate according cosine
- 2) In a definite low energy range
- 3) With a proper period (1 year)
- 4) With proper phase (about 2 June)
- 5) Just for single hit events in a multidetector set-up
- 6) With modulation amplitude in the region of maximal sensitivity must be <7% for usually adopted halo distributions, but it can be larger in case of some possible scenarios

$$v_{\oplus}(t) = v_{sun} + v_{orb} \cos\gamma\cos[\omega(t-t_0)]$$

$$S_k[\eta(t)] = \int_{\Delta E_k} \frac{dR}{dE_R} dE_R \cong S_{0,k} + S_{m,k} \cos[\omega(t-t_0)]$$

Drukier, Freese, Spergel PRD86; Freese et al. PRD88

- v_{sun} ~ 232 km/s (Sun vel in the halo)
- v_{orb} = 30 km/s (Earth vel around the Sun)
- $\gamma = \pi/3$, $\omega = 2\pi/T$, T = 1 year
- t₀ = 2nd June (when v_⊕ is maximum)

the DM annual modulation signature has a different origin and peculiarities (e.g. the phase) than those effects correlated with the seasons

To mimic this signature, spurious effects and side reactions must not only be able to account for the whole observed modulation amplitude, but also to satisfy contemporaneously all the requirements

DAMA experiment at LNGS

DAMA Collaboration has been developing and using low background crystal scintillators of different types to study rare processes

- DAMA/LIBRA (DAMA/NaI)
- DAMA/LXe
- DAMA/R&D
- DAMA/Crys
- DAMA/Ge

- Dark Matter investigation
- R&D for low background scintillators
- Results on several rare processes
Main results obtained by DAMA in the search for rare processes

- First or improved results in the search for 2β decays of ~30 candidate isotopes: ⁴⁰Ca, ⁴⁶Ca, ⁴⁸Ca, ⁶⁴Zn, ⁷⁰Zn, ¹⁰⁰Mo, ⁹⁶Ru, ¹⁰⁴Ru, ¹⁰⁶Cd, ¹⁰⁸Cd, ¹¹⁴Cd, ¹¹⁶Cd, ¹¹²Sn, ¹²⁴Sn, ¹³⁴Xe, ¹³⁶Xe, ¹³⁰Ba, ¹³⁶Ce, ¹³⁸Ce, ¹⁴²Ce, ¹⁵⁶Dy, ¹⁵⁸Dy, ¹⁸⁰W, ¹⁸⁶W, ¹⁸⁴Os, ¹⁹²Os, ¹⁹⁰Pt and ¹⁹⁸Pt
- The best experimental sensitivities in the field for 2β decays with positron emission
- First observation of α decays of ¹⁵¹Eu ($T_{1/2}$ =5×10¹⁸yr) with a CaF₂(Eu) scintillator and of ¹⁹⁰Pt to the first excited level (E_{exc} =137.2 keV) of ¹⁸⁶Os ($T_{1/2}$ =3×10¹⁴yr)
- Investigations of rare β decays of ¹¹³Cd ($T_{1/2}$ =8×10¹⁵yr), ^{113m}Cd with CdWO₄ scintillator and ⁴⁸Ca with a CaF₂(Eu) detector
- Observation of correlated e^+e^- pairs emission in α decay of ²⁴¹Am ($A_{e^+e^-}/A_{\alpha} \approx 5 \times 10^{-9}$)
- CNC processes in ¹²⁷I, ¹³⁶Xe, ¹⁰⁰Mo and ¹³⁹La;
- Search for ⁷Li solar axions using resonant absorption in LiF crystal
- Search for spontaneous transition of ²³Na and ¹²⁷I nuclei to superdense state;
- Search for cluster decays of ¹²⁷I, ¹³⁸La and ¹³⁹La;
- Search for PEP violating processes in sodium and in iodine;
- Search for N, NN, NNN decay into invisible channels in ¹²⁹Xe and ¹³⁶Xe

Many others are in progress

Highly radiopure NaI(Tl) experiment in DAMA

DAMA/Nal

Concluded on July 2002; 7 annual cycles, 0.29 ton×yr

DAMA/LIBRA

New NaI(Tl) detectors with better radiopurity features; 3 phases of measurement with improved performances

Residual contaminations: ²³²Th, ²³⁸U and ⁴⁰K at level of 10⁻¹² g/g

- DAMA/LIBRA-phase1: 7 annual cycles, 1.04 ton × yr
- Model independent evidence of a particle DM component in the galactic halo at 9.3σ C.L.
- DAMA/LIBRA-phase2: energy threshold 0.75-1 keV; 8 annual cycles released so far (1.53 ton × yr)

The pioneer DAMA/NaI: ≈100 kg highly radiopure NaI(Tl)

Completed in 2002, 7 annual cycles, total exposure **0.29 ton × yr** <u>Performances</u>:

> N.Cim.A112(1999)545-575, EPJC18(2000)283, Riv.N.Cim.26 n. 1(2003)1-73, IJMPD13(2004)2127

Results on rare processes:

- Possible Pauli exclusion principle violation
- CNC processes
- Electron stability and non-paulian transitions in Iodine atoms (by L-shell)
- Search for solar axions
- Exotic Matter search
- Search for superdense nuclear matter
- Search for heavy clusters decays

Results on DM particles:

- PSD
- Investigation on diurnal effect
- Exotic Dark Matter search
- Annual Modulation Signature

PLB408(1997)439 PRC60(1999)065501 PLB460(1999)235 PLB515(2001)6 EPJdirect C14(2002)1 EPJA23(2005)7 EPJA24(2005)51

PLB389(1996)757 N.Cim.A112(1999)1541 PRL83(1999)4918

 nature
 PLB424(1998)195, PLB450(1999)448, PRD61(1999)023512,

 PLB480(2000)23, EPJC18(2000)283, PLB509(2001)197, EPJC23(2002)61, PRD66(2002)043503,

 Riv.N.Cim.26 n.1 (2003)1, IJMPD13(2004)2127, IJMPA21(2006)1445, EPJC47(2006)263, IJMPA22(2007)3155,

 EPJC53(2008)205, PRD77(2008)023506, MPLA23(2008)2125

Model independent evidence of a particle DM component in the galactic halo at 6.3 σ C.L. $_{39/73}$

The DAMA/LIBRA set-up ~250 kg NaI(Tl) (Large sodium Iodide Bulk for RAre processes)

- Result of a 2nd generation R&D for more radiopure NaI(Tl) by exploiting new chemical/physical radiopurification techniques
- 25 x 9.7 kg NaI(Tl) in a 5x5 matrix + Suprasil-B light guides directly coupled to each bare crystal + 2 high Q.E. PMTs (40% at peak) for each crystal working in coincidence at the single ph. el. threshold
- Software energy threshold: 2 keV in phase1; 1 keV in phase2 (new PMTs, 6-10 phe/keV); 0.5 keV in phase2++
- Multiton-multicomponent passive shield (>10 cm of OFHC Cu, 15 cm of boliden Pb + Cd foils, 10/40 cm Polyethylene/paraffin, about 1 m concrete, mostly outside the installation)
- Three-level system to exclude Radon from the detectors
- Calibrations in the same running conditions as prod runs
- Fragmented set-up: single-hit events = each detector has all the others as anticoincidence
- Dismounting/Installing protocol in HPN₂
- All the materials selected for low radioactivity

experimental residuals of the single-hit scintillation events rate vs time and energy (in DAMA/LIBRA-phase2 1 keV thershold)

- Absence of modulation? No $\chi^2/dof=311/156 \Rightarrow P(A=0)=2.3 \times 10^{-12}$

DAMA/NaI + DAMA/LIBRA-phase1 + phase2 favor the presence of a modulated behavior with proper features at 13.7 σ C.L.

Releasing period (T) and phase (t_0) in the fit

	ΔE	A(cpd/kg/keV)	T=2π/ω (yr)	t _o (day)	C.L.
	(1-3) keV	0.0191 ± 0.0020	0.99952 ± 0.00080	149.6±5.9	9.6 σ
DAMA/LIBRA-ph2	(1-6) keV	0.01058 ± 0.00090	0.99882±0.00065	144.5±5.1	11.8σ
	(2-6) keV	0.00954±0.00076	0.99836±0.00075	141.1±5.9	12.6 σ
DAMA/LIBRA-ph1 + DAMA/LIBRA-ph2	(2-6) keV	0.00959±0.00076	0.99835±0.00069	142.0±4.5	12.6 σ
DAMA/Nal + DAMA/LIBRA-ph1 + DAMA/LIBRA-ph2	(2-6) keV	0.01014±0.00074	0.99834±0.00067	142.4±4.2	13.7σ

- No Modulation above 6 keV
- No modulation in the whole energy spectrum: studying integral rate at higher energy, *R*₉₀

 $[\]sigma \approx 1\%$, fully accounted by statistical considerations

- R₉₀ percentage variations with respect to their mean values for single crystal in the DAMA/LIBRA running periods
- Fitting the behaviour with time, adding a term modulated with period and phase as expected for DM particles:
 - \Rightarrow consistent with zero

+ if a modulation present in the whole energy spectrum at the level found in the lowest energy region $\rightarrow R_{90} \sim \text{tens cpd/kg} \rightarrow \sim 100 \sigma$ far away

NPAE 22 (2021) 329

NPAE 22 (2021) 329

 Multiple hits events analysis: Dark Matter particle "beam" "switched off"

DAMA/LIBRA-phase2 (8 a.c., 1.53 ton \times yr)

Single hit residual rate vs Multiple hit residual rate

- Clear modulation in the single hit events
- No modulation for multiple hit events

This result offers an additional strong support for the presence of DM particles in the galactic halo further excluding any side effect either from hardware or from software procedures or from background

 The analysis in frequency: DAMA/Nal + DAMA/LIBRA-(ph1+ph2) (22 yr), exposure: 2.86 ton × yr

Clear annual modulation in (2-6) keV + only aliasing peaks far from signal region

DAMA: model-dependent analysis

A large (but not exhaustive) class of halo models and uncertainties are considered

NPAE 20(4) (2019) 317 PPNP114(2020)103810

NPAE 22 (2021) 329

- Max-likelihood analysis (T=1 yr, $t_0=152.5 \text{ day}$)
- DAMA/NaI + DAMA/LIBRA-phase1+ DAMA/LIBRA-phase2 (2.86 ton×yr)

- A clear modulation is present in the (1-6) keV energy interval, while *S_m* values compatible with zero are present just above
- The S_m values in the (6–14) keV energy interval have random fluctuations around zero with χ^2 equal to 20.3 for 16 degrees of freedom (upper tail probability 21%).

Summary of possible systematics or side reactions in DAMA/LIBRA

Source	Main comment	Cautious upper limit (90%C.L.)
RADON	Sealed Cu box in HP Nitrogen atmosphere, 3-level of sealing, etc.	<2.5×10 ⁻⁶ cpd/kg/keV
TEMPERATURE	Installation is air conditioned+ detectors in Cu housings directly in contact with multi-ton shield→ huge heat capacity + T continuously recorded	<10 ^{.4} cpd/kg/keV
NOISE	Effective full noise rejection near threshold	<10 ⁻⁴ cpd/kg/keV
ENERGY SCALE	Routine + intrinsic calibrations	<1-2 ×10 ⁻⁴ cpd/kg/keV
EFFICIENCIES	Regularly measured by dedicated calibrations	<10 ⁻⁴ cpd/kg/keV
BACKGROUND	No modulation above 6 keV; no modulation in the (2-6) keV <i>multiple-hits</i> events; this limit includes all possible sources of background	<10 ⁻⁴ cpd/kg/keV
SIDE REACTIONS	Muon flux variation measured at LNGS	<3×10 ⁻⁵ cpd/kg/keV

No systematics or side reaction able to mimic the exploited DM signature (i.e. to account for the whole measured modulation amplitude and to simultaneously satisfy all the requirements of the signature), has been found

NaI(Tl) crystal scintillators for DM investigation: COSINE-100 experiment YangYang(Y2L) Underground Laboratory

- Collaboration between the DM-Ice and KIMS experiments
- Site: Yangyang underground laboratory in South Korea (700 m rock overburden)
- Detector: 8 NaI(Tl) crystals (106 kg) in liquid scintillator
- Experiment started to take physics data in September 2016 to study annual modulation as reported by DAMA

Crystal	Mass (kg)	Powder	Alpha rate (mBq/kg)	⁴⁰ K (ppb)	²³⁸ U (ppt)	²³² Th (ppt)	Light yield (p.e./keV)
Crystal 1	8.3	AS-B	3.20 ± 0.08	43.4 ± 13.7	< 0.02	1.31 ± 0.35	14.88 ± 1.49
Crystal 2	9.2	AS-C	2.06 ± 0.06	82.7 ± 12.7	< 0.12	< 0.63	14.61 ± 1.45
Crystal 3	9.2	AS-WS II	0.76 ± 0.02	41.1 ± 6.8	< 0.04	0.44 ± 0.19	15.50 ± 1.64
Crystal 4	18.0	AS-WS II	0.74 ± 0.02	39.5 ± 8.3		< 0.3	14.86 ± 1.50
Crystal 5	18.0	AS-C	2.06 ± 0.05	86.8 ± 10.8		2.35 ± 0.31	7.33 ± 0.70
Crystal 6	12.5	AS-WSⅢ	1.52 ± 0.04	12.2 ± 4.5	< 0.018	0.56 ± 0.19	14.56 ± 1.45
Crystal 7	12.5	AS-WSII	1.54 ± 0.04	18.8 ± 5.3		< 0.6	13.97 ± 1.41
Crystal 8	18.3	AS-C	2.05 ± 0.05	56.15 ± 8.1		< 1.4	3.50 ± 0.33
DAMA			< 0.5	< 20	0.7 - 10	0.5 – 7.5	5.5 - 7.5

NaI(Tl) crystal scintillators for DM investigation: COSINE-100 experiment

- Last data released: Oct 2016-Jul 2018 (3 crystals not used), Exposure = 97.7 kg × year
- Traditional approach used by comparing experimental data with WIMP signal (model dependent analysis and result!)
- Experimental counting rate at keV higher than DAMA/LIBRA
- Not enough sensitivity to test DAMA/LIBRA

Sci. Adv. 7, eabk2699 (2021)

- Exclusion plots obtained are very sensitive to the models and parameters used in the calculation
- Different QF wrt DAMA crystals

NaI(Tl) crystal scintillators for DM investigation: COSINE-100 experiment

The methodology of the background subtraction (Cosine-100) is strongly discouraged and deprecated because of the impossibility to have a precise knowledge of the background contribution in particular at low energy, leading to large systematic uncertainties.

Very important discrepancies in the
reconstruction of the structure at \approx
45 keV, due to:

- Missing contribute of ¹²⁹I (emended in a later paper, but not in the exclusion limits)
- 2. Overestimate contribute of ²¹⁰Pb

	Cosine - Crystal #7
Components	Background 2-6 keV (dru)
Internal ²¹⁰ Pb	1.50 +/- 0.07
Internal ⁴⁰ K	0.05 +/- 0.01
Surface ²¹⁰ Pb	<mark>0.38</mark> +/- 0.21
³ H (Cosmogenic)	<mark>0.58</mark> +/- 0.54
¹⁰⁹ Cd (Cosmogenic)	0.09 +/- 0.09
Other cosmogenic	0.05 +/-0.03
External	0.03 +/- 0.02
Total expected	2.70 +/- 0.59
Data	2.64 +/- 0.05

Eur.Phys.J.C(2018)78 :490

Crystal #2, #3, #4, #6, #7 $<data-model>_{crystals} [1-6 keV] = -0.04\pm0.21 cpd/kg/keV$ $\rightarrow S_0[1-6 keV]<0.31 cpd/kg/keV 90\%CL$ Compatible with DAMA result

[Unit: Counts/	[Unit: Counts/keV/kg/day]		
Dat	a	2.492 ± 0.009	
Total sim	ulation	2.504 ± 0.210	
	²¹⁰ Pb	0.999 ± 0.008	
Internal	⁴⁰ K Others	$\begin{array}{c} 0.046 \pm 0.004 \\ 0.0048 \pm 0.0001 \end{array}$	
$\frac{\rm Surface}{^{210}\rm Pb}$	Crystal Teflon	$\begin{array}{c} 0.513 \pm 0.131 \\ 0.051 \pm 0.004 \end{array}$	
Cosmogenic	³ H ¹¹³ Sn ¹⁰⁹ Cd	$\begin{array}{c} 0.798 \pm 0.164 \\ 0.020 \pm 0.002 \\ 0.022 \pm 0.002 \\ 0.015 \pm 0.004 \end{array}$	
External (External $(\times 10^{-2})$		

Eur.Phys.J.C(2021)81:837

If the model of background is not correct the exclusion limits are meaningless

NaI(Tl) crystal scintillators for DM investigation: ANAIS experiment

- Site: Canfranc Underground Laboratory, @ SPAIN (under 2450 m.w.e.)
- Detector: 9 NaI(Tl) crystals (112.5 kg) in a 3x3 matrix; light collection in all the nine modules ~ 15 p.e./keV (12.7-15.8 p.e./keV)
- In data taking data since August 2017 to study annual modulation as reported by DAMA

ANAIS-112 set-up:

- 10 cm archaeological lead
- 20 cm low activity lead
- Tight box preventing Radon entrance
- 16 plastic scintillators acting as muon veto system
- 40 cm polyethylene / water

NaI(Tl) crystal scintillators for DM investigation: ANAIS experiment

- Last data release: 3 years annual cycles, exposure 313.95 kg×y
- Time dependent background
- Data analysis to extract modulation signal in the time dependent rate: robust background model mandatory
- No annual modulation signal observed
- Claimed incompatibility with DAMA at 3.3 (2.6) σ, for a sensitivity of 2.5 (2.7) σ

Modulation amplitudes from fit: [1-6] keV: -0.0034±0.0042 cpd/kg/keV [2-6] keV: 0.0003±0.0037 cpd/kg/keV)

Phys. Rev. D 103, 102005 (2021)

About the results of ANAIS experiment

- ANAIS measures ≈ 5 times larger counting rate in [1,2] keV wrt DAMA/LIBRA-phase2
- High counting rate in ROI explained as populations, other than background, "which could be leaking at the lowest energies in the ROI" being the trigger rate "dominated by other events, some of them with origin in the PMTs, others still unexplained"
- In ANAIS the detection efficiencies of the applied cuts are **not periodically evaluated** with dedicated calibrations at very low energy as in DAMA/LIBRA
- The only check on stability of the cut-efficiencies is a fit on the counting rate of low energy events induced by the ²²Na or ⁴⁰K contaminations, selected in double coincidences, and with cuts applied

 Even a 0.3% instability of the ANAIS counting rate in the [1-6] keV region is enough to hide the annual modulation signal detected by DAMA: A ≈ 0.01 cpd/kg/keV (green line in the plot)

About the nuclear quenching factor

- Different quenching factors are expected and measured for different NaI(Tl) crystals (they depends, e.g., on the used growing technique, on the different thallium doping concentration, ...)
- A clear evidence is offered by the different α/β light ratio measured with DAMA and COSINE crystals
- As mentioned also in the ANAIS paper, this effect introduce a systematic uncertainty in the comparison with DAMA/LIBRA

 α events from 238 U and 232 Th chains in DAMA crystal span from 2.6 to 4.5 MeVee, while for the COSINE crystal they span from 2.3 to 3.0 MeVee

SABRE: Sodium Iodide with Active Background REjection

Search for DM particles in the galactic halo through the annual modulation effect = signal from DM expected to modulate yearly with maximum in June.

Expected recoil enerav 1-100 keV

Twin experiments at Laboratori del Gran Sasso (LNGS) and SUPL (a future underground laboratory in Australia).

In the southern hemisphere, seasonal modulations have opposite phase while DM induced modulation maintains the same phase.

from C. Tomei, SABRE Collaboration

SABRE is a new experiment using Nal(TI) scintillating crystals. Its goal is to reach an extremely low background.

- Nal(Tl) scintillating crystal of ultra high radiopurity
- At SUPL, a liquid scintillator veto surrounding the Nal detectors at 4π , strongly reduces:
 - external backgrounds
 - internal backgrounds that release

SABRE PoP and SABRE-North full scale

A Proof of Principle (1 crystal+active veto) recently concluded @LNGS

Results:

- Breakthrough background level: ~1 count/day/kg/keV in the 1-6 keV ROI
- Active veto no longer required, need radiopure reflector

Goals for near future:

- Test the same crystal (NaI-33) with a new clean reflector
- Test reproducibility of crystal radiopurity
- Assembly of detector modules at LNGS with a new custom glovebox

→ Demonstrate feasibility of a full-scale experiment without active veto and finalize the design of crystal array + shielding

Dark Matter with directionality approach

Based on the study of the correlation between the arrival direction of DM candidates able to induce a nuclear recoil and the Earth motion in the galactic frame

- The direction of the induced nuclear recoil is strongly correlated with that of the impinging DM particle
- The observation of an anisotropy in the distribution of nuclear recoil direction could give evidence for such DM candidates

A direction-sensitive detector is needed

Directionality with anisotropic scintillators

- Proposed for the first time in refs. [P. Belli et al., Il Nuovo Cim. C 15 (1992) 475], where the case of anthracene was analysed; some preliminary activities have been carried out [N.J.C. Spooner et al, IDM1997 Workshop; Y. Shimizu et al., NIMA496(2003)347]: the idea was revisited in [R. Bernabei et al., EPJC28(2003)203]
 - Anisotropic Scintillator:
 - <u>for heavy particles</u> the light output and the pulse shape depends on the particle impinging direction with respect to the crystal axes
 - <u>for γ/e the light output and the pulse shape are isotropic</u>

ZnWO₄ anisotropic scintillator: a very promising detector (NIMA544(2005)553, Eur. Phys. J. C 73 (2013) 2276, NIMA935(2019)89, Eur. Phys. J. A (2020) 56:83)
1) very good anisotropic features;
2) high level of radiopurity;
3) high light output (improve at low temperature), that is low energy threshold feasible;
4) high stability in the running conditions;
5) sensitivity to small and large mass DM candidate particles;
6) detectors with ~ kg masses

Signal rate in a given scenario

As a consequence of the light response anisotropy for heavy particles, recoil nuclei induced by the considered DM candidates could be discriminated from the background thanks to the expected variation of their low energy distribution along the day

NB: Many quantities are model dependent and a model framework has to be fixed: in this example, for simplicity, a set of assumptions and of values have been fixed, without considering the effect of the existing uncertainties on each one of them and without considering other possible alternatives

... the model framework considered here

- a simple spherical isothermal DM halo model with Maxwellian velocity distribution, 220 km/s local velocity, 0.3 GeV/cm³ local density (ρ_0) and 650 km/s escape velocity;
- DM with dominant spin-independent coupling and the following scaling law (DM-nucleus elastic cross section, σ_n , in terms of the DM elastic cross section on a nucleon, σ_p):

$$\sigma_n = \sigma_p \left(\frac{M_n^{red}}{M_p^{red}} \cdot A \right)^2 = \sigma_p \left(\frac{m_p + m_{DM}}{m_n + m_{DM}} \cdot \frac{m_n}{m_p} \cdot A \right)^2$$

• a simple exponential form factor:

$$F_n^2(E_n) = e^{-\frac{E_n}{E_0}} \qquad E_0 = \frac{3(\hbar c)^2}{2m_n r_o^2} \qquad r_0 = 0.3 + 0.91\sqrt[3]{m_n}$$

Quenching factor:

$$q_n(\Omega_{out}) = q_{n,x} \sin^2 \gamma \cos^2 \phi + q_{n,y} \sin^2 \gamma \sin^2 \phi + q_{n,z} \cos^2 \gamma$$

where $q_{n,i}$ is the quenching factor value for a given nucleus, *n*, with respect to the *i*-th axis of the anisotropic crystal and $\Omega_{out} = (\gamma, \phi)$ is the output direction of the nuclear recoil in the laboratory frame

 $q_{n,i}$ have been calculated following ref. [V.I. Tretyak, Astropart. Phys. 33 (2010) 40] considering the data of the anisotropy to α particles of the ZnWO₄ crystal

Energy resolution: $FWHM = 2.4\sqrt{E(keV)}$

Directionality: expected signal

- For an experiment performed at the LNGS latitude (42°27'N)
 - \Rightarrow at 21:00 h LST the DM particles come mainly from the top and
 - \Rightarrow 12 h later from the North and parallel to the horizon line
- Anisotropic detector response during a sidereal day is at maximum by arranging the ZnWO₄ crystal axis so that:
 - The one with the largest light output is vertical
 - > The one with the smallest light output points north

(0.034)(0.032)(0.0

- The diurnal effect refer to the sidereal day and not to the solar day
- Absolute maximum rate is at day 152 and at 21h LST (when the DM flux is at maximum and the DM preferential arrival direction is near the zenith)

TEST:

۲

•

Identical sets of crystals placed in the same set-up with different axis orientation will observe consistently different time evolution of the rate

The signature is very distinctive and cannot be mimicked by background

ADAMO project: example of reachable sensitivity

Assumptions:

- simplified model framework (see before)
- 200 kg of ZnWO₄
- 5 years of data taking
- 2 keVee threshold
- four possible time independent background levels in the low energy region:
 - ➢ 10⁻⁴ cpd/kg/keV
 - ➢ 10⁻³ cpd/kg/keV
 - ➢ 10⁻² cpd/kg/keV
 - > 0.1 cpd/kg/keV

The directionality approach can reach in the given scenario a sensitivity to the cross section at level of 10⁻⁵ – 10⁻⁷ pb, depending on the particle mass

Allowed regions obtained with a corollary analysis of the 9.3 σ C.L. DAMA model independent result in terms of scenarios for the DM candidates considered here (green, red and blue)

Response of the ZnWO4 to $^{\rm 241}\!Am~\alpha$ source

- Calibration set-up:
 - \circ PMT Hamamatsu H11934-200 (transit time \approx 5 ns) + ZnWO₄
 - LeCroy Oscilloscope 24Xs-A, 2.5 Gs/s, 200MHz bandwidth
 - $\circ~$ Pulse profiles acquired in a time window of 100 μs
- Crystal irradiated contemporaneously with γ (^2Na) and α (^241Am) sources along the three crystal axes
- Different α energies obtained with Mylar foils and measured with Si detector
- Very efficient PSD capability to discriminate α and γ

Eur.Phys.J.A 56 (2020) 83

67/73

Response of the $ZnWO_4$ to monoenergetic neutrons

• Set-up:

- ✓ ZnWO₄ Crystal (10 x 10 x 10 mm³)
- ✓ Two Hamamatsu PMTs: HAMA-H11934-200
- ✓ 2 Neutron detectors (Scionix EJ-309)
- Neutron Gun, Thermo Scientific MP320: 14 MeV neutrons

- Strategy: search for coincidence between a scattered neutron at a fixed angle and scintillation event in ZnWO₄ occurred in a well defined time window (TOF)
- Once fixed the θ angle, the recoil direction and energy are fixed
- Measurements performed at different θ angles and for different ZnWO₄ orientation (nuclear recoils along axes III and I)

Response of the $ZnWO_4$ to monoenergetic neutrons

Energy distributions in ZnWO₄ for coincidence events when neutrons are identified in EJ-309 and two *TOF* windows are considered (case θ =80°):

- Events with proper TOF for neutron induced recoils
- Events with off-window TOF: random coincidences

First evidence for anisotropy on the response of ZnWO ₄ for nuclear recoils						
θ	Crystal axis	E_{ZWO} (keVee)	σ (keVee)	$E_{R,O}$ (keV)	Quenching factor, Q	<i>Q</i> 111/ <i>Q</i> 1
80°	III	99.3 ± 2.5	9	1402	0.0708 ± 0.0018	1.174 ± 0.051
	Ι	84.5 ± 2.9	12		0.0603 ± 0.0021	
70 °	III	86.5 ± 2.0	7	1128	0.0767 ± 0.0018	1.121 ± 0.038
	Ι	77.2 ± 1.9	10		0.0684 ± 0.0017	
60 °	III	75.4 ± 1.8	9	866	0.0871 ± 0.0021	1.166 ± 0.059
	Ι	64.7 ± 2.9	10		0.0747 ± 0.0033	

The anisotropy is significantly evident for oxygen nuclear recoils in the energy region down to hundreds keV at 5.4 σ confidence level

Eur.Phys.J.A 56 (2020) 83

SrI₂(Eu) crystal scintillator: a very promising detector for rare processes

Interesting scintillator for DM investigations and 2β (2EC, EC β^+) decay in ⁸⁴Sr:

- high light output <(~100 000 photons/MeV)
- very high energy resolution (FWHM = 3% at 662 keV)
- possibility to grow crystals with large-size and uniform light yield
- radiopure (not natural long-lived radioactive isotopes)

Table 1 Properties of SrI ₂ (Eu) crystal scintillators.	
Property	Value
Density (g/cm ³)	4.5-4.6
Melting point (°C)	515
Structural type	Orthorhombic
Index of refraction	1.85
Wavelength of emission	
maximum (nm)	429-436
Light yield (photons/MeV)	(68-
	$120) \times 10^{3}$
Energy resolution (FWHM, %) for 662 keV γ of ¹³⁷ Cs	2.6-3.7
Scintillation decay time (μ s) under X-ray/ γ ray excitation at 300 K	0.6-2.4

Radiopure Zr-based crystal scintillators: CZC

- Non hygroscopic crystal, LY ≈ 34800 photons/MeV, density = 3.36 g/cm³
- Interesting new crystal scintillator to study:
 - $\beta\beta$ decay in ^{94,96}Zr and rare single- β decay in ⁹⁶Zr
- The 2v2β decay of ⁹⁶Zr already measured while single-β decay still not observed, T_{1/2}^{expected}=1.1×10²⁰ yr (sixth-forbidden to gs and fourth-forbidden to the first two excited states of ⁹⁶Nb)
- Cs₂ZrCl₆ crystals scintillators developed in the framework of DAMA Collaboration
- Two Cs_2ZrCl_6 in data taking: expected sensitivity of 10^{21} yr for the 2 β decay and $T_{1/2}$ ~1.4×10²⁰ yr for the β decay of the ⁹⁶Zr

m=24.0(1)g *h*=21.20(5) mm Ø=21.00(5) mm

K. Saeki et al., Applied Physics Express 9, 042602 (2016)

Radiopure Hf-based crystal scintillators: CHC

- Cs_2HfCl_6 crystal scintillator for studying the rare α and 2β decays of hafnium isotopes
- LY ≈ 50000 photons/MeV, FWHM ≈ 3.3% @ 662 keV, excellent PSD capability
- α decay candidates: ¹⁷⁴Hf, ¹⁷⁶Hf, ¹⁷⁷Hf, ¹⁷⁸Hf, ¹⁷⁹Hf, ¹⁸⁰Hf;
- 2β decay candidate: ¹⁷⁴Hf.

In the framework of DAMA Collaboration:

- A search for double beta decays in hafnium using HP-Ge gamma spectrometer
- Study of rare alpha decay in Hf isotopes using a crystal scintillators
- ¹⁷⁴Hf α decay to the ground state observed, $T_{1/2} = 7.0(1.2) \times 10^{16} \text{ y}$
- $T_{1/2}$ limits of ¹⁷⁶Hf and ¹⁷⁷Hf α decay close to theoretical predictions

72/73

Energy (keV)

2500

Conclusion

- Crystal scintillators at room temperature have been widely employed in underground physics and in Dark Matter investigation since the beginning of this field
- This technique has allowed to obtain important and competitive results by investigating many rare processes
- This technique can be further improved
- Annual modulation signal observed with ultra-radiopure NaI(Tl) by DAMA
- Crystal scintillators is still a valid approach for Dark Matter and offer also the possibility to study the directionality technique with anisotropic scintillators