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Solar neutrinos




introduction

on solar neutrinos

< Reliable models of the sun have existed since the 1960s. Many tests conducted.

< Neutrino studies provided 1st evidence of flavour oscillations, and for the past 10

years, have probed solar core and verified the functioning of its nuclear engine.

¢ Many detectors have been involved - see later. Observations obtained by

scattering on particular nuclei andv + ¢ — v + e (=elastic scattering)



Generalities on the Sun

* The sun radiates a prodigious amount

of energy, L, = 3.282 X 107’ hals
S

* Elemental abundances at its surface,

roughly summarized by X,Y,Z

* Helioseismology allows to measure
the velocity of the sound and the

depth of the convective zone
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History

(D , : : :
~ Sun as a fusion reactor: first imagined about 100 yr ago in the
discussion of nuclei, model elaborated before WWII (von Weizsdcker &

Bethe), last details worked out mid fifties (Fowler)

- .
~ End of WWII, Bruno Pontecorvo proposed to observe solar neutrinos



History

(D , : : :
~ Sun as a fusion reactor: first imagined about 100 yr ago in the
discussion of nuclei, model elaborated before WWII (von Weizsdcker &

Bethe), last details worked out mid fifties (Fowler)

- .
~ End of WWII, Bruno Pontecorvo proposed to observe solar neutrinos

Y

~ Key theoretical astrophysics tool: the standard solar model. We owe

its first realisation in mid sixties to John Bahcall

& Again Pontecorvo elaborated the idea of flavor oscillations (1957-1067)
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Effectiveness of the energy production processes in a star
similar to the Sun, depending upon the central temperature.

We begin the discussion from the pp-chain.




pp-chain and nuclear transformations

L0




again on the
pp-chain

the color code
in the arrows
(see inset)
indicates the
energies of the
corresponding
heutrinos

Carlo Mascaretti, PhD thesis, 2020
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elastic scattering

of neutrinos on electrons

* a basic process of the standard model

* (radiative corrections known)

* theoretically very clean
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elastic scattering

of neutrinos on electrons

a basic process of the standard model

(radiative corrections known)

theoretically very clean

mass of the electron is less than the energies of boron neutrinos: in water

Cherenkov detectors, direction can be reconstructed (—> Kamiokande, SK)

the different components of the neutrino energy spectrum can be identified and

scintillator detectors allow to cover them all (—> Borexino)



probability of “survival”

of the electron neutrinos in the Sun
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probability of “survival”

of the electron neutrinos in the Sun

% the probabilities differ from 1
% something around § MeV

Let us recall just how these
characteristics arise in the theory
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neutrino transformation (oscillations)

an essential reminder of the relevant theoretical ingredients

the neutrinos produced in weak interactions are superposition of mass eigenstates

‘Ue> — Uel ‘y1> + UeZ‘”Z) + Ue3‘y3>
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neutrino transformation (oscillations)

an essential reminder of the relevant theoretical ingredients

the neutrinos produced in weak interactions are superposition of mass eigenstates

‘Ue> — Uel ‘y1> + UeZ‘”Z) + Ue3‘y3>

. 1

this is not a stationary state, |v,,t) # |v,), due to the phases of propagation |v;) — exp ( I 2 ) | v;) with
2

E. = \/ (pc)” + (micz)2 ; thus, the probability P, ,, = [(v,,t|v,)| deviates from unity

e Ve

furthermore, the state |v,) receives another special phase (=Mikheyev-Smirnov-Wolfenstein effect) when it propagates in
matter rich of electrons, due to weak interactions. The effect on oscillations depends upon the ratio

~ V2GEpN@ ~104< NO )(7.37><10—5 eV2)( E, )

0 = Am?/(2E,) 100 mol Am?



Photo from the Nobel Photo from the Nobel Photo from the Nobel

Foundation archive. Foundation archive. Foundation archive.
Raymond Davis Jr. Masatoshi Koshiba Riccardo Giacconi
Prize share: 1/4 Prize share: 1/4 Prize share: 1/2

The Nobel Prize in Physics 2002 was divided, one
half jointly to Raymond Davis Jr. and Masatoshi
Koshiba "for pioneering contributions to
astrophysics, in particular for the detection of
cosmic neutrinos" and the other half to Riccardo

(yiacecnni "foar ninneerino cantrihiitinne tn

Davis: first observation of solar neutrinos
Koshiba: observation of solar and supernova neutrinos

© Nobel Media AB. Photo: A. © Nobel Media AB. Photo: A.
Mahmoud Mahmoud

Takaaki Kajita Arthur B. McDonald
Prize share: 1/2 Prize share: 1/2

The Nobel Prize in Physics 2015 was awarded
jointly to Takaaki Kajita and Arthur B. McDonald
"for the discovery of neutrino oscillations, which
shows that neutrinos have mass."

Kajita: experimental proof of oscillation with atmospheric neutrinos
McDonald: experimental proof of oscillation with solar neutrinos



probability of “survival”

of the electron neutrinos in the Sun

% the probabilities differ from 1

% something around § MeV

these two graphs are based on SNO and
Borexino measurements - grey bars
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summary and discussion

on solar neutrinos

< Recognition of solar neutrino oscillations has changed the

field and impacted on particle physics (more discussion tomorrow)
w The SSM remains a key tool and can be still improved

» Borexino played a big role and opened new avenues for the

experimental research



Geoneutrinos




introduction

on geoneutrinos

< Relevant probe of radioactive elements in the Earth's
interior. Natural links with geophysics, but also planetology

¢ Two detectors: KamLAND and Borexino

< Detection reactionv, + p — e™ + n (=inverse beta decay)



the Earth

and radioactive decays

> The Earth is (almost) as old as the Sun

> It is formed by various stratified structures. The main ones: crust; mantle; core
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the Earth

and radioactive decays

> The Earth is (almost) as old as the Sun

> It is formed by various stratified structures. The main ones: crust; mantle; core

> It has been cooling since the beginning and it radiates 47 TW.

> (the innermost part has a temperature of about 7500 °C)

> Kelvin’ early estimations of the heating rate led to an age in ~107 years scale
> They were wrong because of incorrect modeling

> Furthermore, radioactivity, which contributes to Earth’ internal heath, was unknown



nature of geoneutrinos

anti-neutrino ‘

| B
%k beta decay of neutron rich -

elements leading to antineutrinos "< —
a .

%% (to be contrasted with solar tritium

neutrinos where proton rich elements transform and produce neutrinos) hollum-3



nature of geoneutrinos

anti-neutrino .

%k beta decay of neutron rich > ® .
elements leading to antineutrinos —
. B -
.
** (to be contrasted with solar tritium
neutrinos where proton rich elements transform and produce neutrinos) helium-3

¢ in that, this more closely resembles the physical situation realised in artificial fission
reactors, which actually act as a background for geo-neutrinos



“inverse beta decay” (Bethe & Peierls)

proton targets are available in water or hydrocarbon

(this reaction used to detect for the Ist time a signal)



an updated calculation

300+
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an updated calculation

arX1v:2206.05567v1
0 975\5/Ud
do G% cos” O e ]
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antineutrino spectra

expectations

There are three components:

238U — *°°Pb + 8a + 6e + 677, + 51.7MeV.

232Th — 298Pb + 6a + 4e + 4, + 42.7MeV.

VYK 5 9Ca+e+ 7, +1.31 MeV.

[ . llli |

Ve €nergy [MeV]
The first 2 can be seen with IBD.

Note that uranium-238 extends at higher energies

1.0 1.5 2.0

2.5

3.0

3.5

G. Bellini et al., Riv. Nuovo Cimento 45 (2022) 1



interesting questions

e discovering geo-neutrinos (seeing something)
* observe site dependencies

e testing geophysical models

 quantify the mantle component

e distinguish uranium and thorium contributions



measurements

In the spectra of Borexino 2020
and KamLAND 2022, geoneutrino
signal is visible and not only.

There is also an indication of
both its components, i.e.:

* thorium-232 and

* uranium-238, the latter
extending at higher energies
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summary and discussion

on geoneutrinos

« The discovery of geoneutrinos (KamLAND + Borexino) is fairly recent

v Geoneutrinos will allow interesting questions to be addressed, and no
major problems should be an obstruction to proceed further

v Significant scope for progress, especially with larger detectors (JUNO)



Supernova neutrinos



introduction

on supernova neutrinos

¢ Supernovae are one of the most important events in astronomy, although
those in the Milky Way are rare on the human time scale.

< Several useful reactions for detections, including those previously discussed.
¢ The role of neutrino oscillations is unclear.

¢ A historical detection was made in 1987. Its discussion offers us several
occasions to discuss certain relevant issues.



A bit of history

d Ian Shelton and Oscar Duhalde
observed SN1987A on Feb 24, 1987

< a neutrino signal was seen in e S S
Kamiokande, IMB, Baksan ~5h earlier b ¢

< maybe there was asignalin LSD/ '
Mont Blanc before that




Kamiokande-ll and SN1987A
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cross sections in 1 kton of water

2
Ntargxa- [Cm*]

1x107%
5% 1077

[MeV]

— IBD
—=- Ve ¢
——- all-V e

c-e= Vo 160



modeling SN emission



the simplest model

the concept of neutrino sphere

The surface of proto-neutron star is a black body

radiator

Each neutrino has its own temperature: one for v,;

one for anti-v; one for the other 4, grouped

Neutrino-

sphere

Black body:

*» Radius
* Temperature
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the simplest model

the concept of neutrino sphere

The surface of proto-neutron star is a black body

radiator

Each neutrino has its own temperature: one for v,;

one for anti-v; one for the other 4, grouped

Any type of neutrinos or antineutrino carries away 1/6

of the total energy, a hypothesis called “equipartition”

L ~ R?> x T* ~ 10°? erg/s for R=15km and T=5MeV NETNCS Qi Biack body:
SP here | * Radius

* Temperature

Emission time = Energy/(6L) ~ 10 s




comparison with the data

extends Jegerlehner et al 96



combined fit

Fitting IMB, Kamiokande-Il above 4.5
MeV and Baksan by a Maxwell-
Boltzmann and assuming [.B.D. reactions
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we find the allowed region to the r.h.s. i
with best fit values:
Temperature = 4 MeV il

Radiated energy =5 1052 erg




combined fit

Fitting IMB, Kamiokande-Il above 4.5
MeV and Baksan by a Maxwell-
Boltzmann and assuming [.B.D. reactions

we find the allowed region to the r.h.s.
with best fit values:

Temperature =4 MeV

Radiated energy =5 1052 erg

12

10

Expectations: 7= (E ) = 4MeV, & = &Eipt/6 ~ 5 X 10°% erg (1)




more refined modelling

From 1otant, Sato, Dalhed, Wilson, ApJ 496, 1998
Accretion

Nadyozhin 78, Wilson 81, W.ilson
and Bethe 86... argued that the
o emission is different than thought

Neutronization

10 I':
l

5
% : e T A L Ve E by Zatsepin. It consists of 3 main
0‘:6 B v i bhases: neutronization, accretion,
O 5_ | cooling. In Super-Kamiokande, a su-
= gL' /S-N¢ 0o " _
B " ] pernova at D = 10 kpc vyields
3
5 i 7 _
§ 1 A Events Energy | Duration
l: S—
¥ ==——%——  1(ES) | 2foc | 3ms
0.0 0.5 1.0 - 18 1K (IBD) | 50 foe 0.5 s
Time [sec]
3K (IBD) | 200 foe 10 s




data and initial peak

LUMINOSITY, in 10752 erg/s

6.
RED = Kamiokande-ITI
PURPLE = IMB

= Baksan

2.

0'6 .II Pa—
0. 1. 2. 3. 4.

EMISSION TIME, in s

REF.: T. Loredo, D.Q. Lamb, “Bayesian analysis of neutrinos observed from supernova SN1987A,” PRD 65 (2002) 063002.
REF.: G.Pagliaroli, FV, M.L.Costantini, A.lanni, “Improved analysis of SN1987A antineutrino events,” Astropart. Ph. 31 (2009) 163.



few last points



gocelyn Bell




ELSEVIER

New Astronomy
Volume 83, February 2021, 101498

On the rate of core collapse supernovae in the

milky way

Karolina Rozwadowska 2 b, Francesco Vissani ~

93, b= Enrico Cappellaro ©

the best value for the rate

R=1.63+0.46
100 yr

which corresponds to a time of
occurrence

T =631 yr

—— 1(k): Best estimate, this paper
- i 1(j): Combination of (f-i), this paper
= | 1(i): Rest of Local Group

1(h): Andromeda
1(g): Milky Way neutrinos
- i 1(f): Milky Way optical
p—e—ri 1(e): Combination of (a—d)
. t (d): Neutron star birthrate (Keane & Kramer 2008)
- . 1(c): Al-26 (Diehl et al. 2006)
. | 1(b): Extragalactic SN rates (Li et al. 2011)
- { 1(a): Stellar Birthrate (Reed 2005)

T
R (100 yr)~’

Figure 1: CCSN rate R in the Milky Way: from the existing literature (blue), computed from
direct information from the Local Group (gray) and full result (black) of Eq. (17).



the difficulties with neutrino oscillations

*  We are sure that 3-flavor neutrino
oscillations occur

*  We have reliable formulae for

matter effect on electrons (MSW) To the
(Dighe & Smirnov PRD 2000) g—— Earth
* Neutrino-neutrino refraction e
Radiating
makes the problem non-linear Neutron

(Pantaleone PLB 1992 ...) Star

Ve

*  Many discussions, but still

inconclusive



summary and discussion

on supernova neutrinos

v« The experience of SN1987A suggests that there are large margins for
experimental progresses: closer (galactic) event and larger detector mass.

< A galactic core collapse supernova is a dream for particle- nuclear- and
astro-physicists.

v We all hope that the experience accumulated by theoretical
astrophysicists should meet observations sooner or later.



Atmospheric neutrinos

(only few urgent remarks)



atmospheric neutrinos
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* the collisions of primary particles
produce secondary mesons, in part. 7
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atmospheric neutrinos

as secondary particles

* the collisions of primary particles
produce secondary mesons, in part. 7

- when 7™ decay, it produces = and v,/7

» when the 4™ decay, it produces e*and

v,orv, v

v 7

e’ U
* at higher energies, muon reach the

ground before decaying and pions are
damped by interactions

H




atmospheric neutrinos

and the induced muons

* the muons are very penetrating
particles and a big annoyance for
underground neutrino detectors

nmwsp&i'n'c \cosmic
Mg g trine
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atmospheric neutrinos

and the induced muons

* the muons are very penetrating
particles and a big annoyance for |
underground neutrino detectors

* when the direction of the particles | N
% R- o
are observed, one can search for up- LB
£oIng muons * |

* these are unmistakably to be N ,./.:-{“c

: : : - \Ea s - A
attributed to muon (anti)neutrinos Y vrwe SM/

§ ¢ aOwWn-sonne \ /' ~ f

N

interacting around the detector
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atmospheric neutrinos

and the induced muons

* the muons are very penetrating
particles and a big annoyance for |
underground neutrino detectors

* when the direction of the particles | N
% R- o
are observed, one can search for up- LB
£oIng muons * |

* these are unmistakably to be N ,./.:-{“c

: : : - \Ea s - A
attributed to muon (anti)neutrinos Y vrwe SM/

§ ¢ aOwWn-sonne \ /' ~ f

N

interacting around the detector

* seen already in sixties!

e
g



atmospheric neutrinos

and neutrino oscillations

o, / INCOMING

two predictions concerning g 5 cosucs
atmospheric neutrinos show evidence ‘ ‘

of oscillations at £, ~ GeV energies,

as a function of Qzenith
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atmospheric neutrinos

and neutrino oscillations

two predictions concerning
atmospheric neutrinos show evidence

of oscillations at £, ~ GeV energies,

as a function of Qzenith

1. the muon-to-electron ratio, which
goes from2to1

2. the up-down symmetry which is
not obeyed for muon neutrinos

W4

INCOMING
COSMIC RAYS
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atmospheric neutrinos

and neutrino oscillations

"/ INCOMING

COSMIC RAYS
—

two predictions concerning
atmospheric neutrinos show evidence

of oscillations at £, ~ GeV energies,

as a function of Qzenith

1. the muon-to-electron ratio, which
goes from2to1

2. the up-down symmetry which is
not obeyed for muon neutrinos

» MSW effect expected at £, ~ 5 GeV



summary and discussion

on atmospheric neutrinos

» For neutrino physics, atmospheric neutrinos have played an
enormous historical role.

« Interestingly, in current oscillation studies and in the few-few ten
GeV region, they still play a prominent role.

w Their distribution above 10-100 TeV is not well known. Note that we
expect them to include a component of prompt neutrinos - from
charm decay - that has not yet been observed.



H.E. astrophysical neutrinos



introduction

on high-energy astrophysical neutrinos

< We are in a merry moment: after a long
phase of preparation, in the last 10yr the
field begun observational phase, thanks to
IceCube experiment.

¢ Here, we introduce the matter and
examine the main motivations.



High energy Y and v

are both potentially
observablel




u+\\o.v,,

w
High energy Y and v Ve

are both potentially »
observablel \,u

\ /
useful thumbrules: £, = £ /5,FE, = E /2and E, = E, /4




osmic neutrinos: how S why

In the master thesis of one
student of Markov,
Zheleznykh (1958),

the key technique to
observe the high-energy
neutrinos was proposed for

the 1st time.




Gamma rays 1n 1-100 GeV energy region:
3rd catalogue ot Fermi-LLAT




what 1s the target tor CR collisions?

If the target is due to hadrons

PP-mechanism:

Regions with high matter

heemimhedmeuonll | Nc spectrum of neutrino reflects

the spectrum of the CR,and it Is
plausibly power-law like, E~¢

protons (p), electrons (e)
acceleration




what 1s the target tor CR collisions?

If the target is due to hadrons

PP-mechanism:

Regions with high matter
density or radiation fields

The spectrum of neutrino reflects
the spectrum of the CR,and it Is

plausibly power-law like, E~¢

If the target is due to photons
PY-mechanism:

here Is threshold for the CR and

protons (p), electrons (e) thus for neutrinos. T he Spectrum
lerati : . . .
R changes with photon distribution




1-100 TeV

one can search a new component of the high energy neutrino spectrum,
possibly reflecting the production spectrum of cosmic rays at their sources




summary of the main goals of
high-energy neutrino science

astronomical goals: see some bright point source, steady or possibly sporadic, over
the atmospheric neutrino background; gamma rays studies offer us hints and guidance

other observational approach: search for a new components of high-energy spectrum
astrophysical goals: the hopes is that this help identify the sources of cosmic rays

particle physics goals: assess the chances of exotic origin / propagation



lceCube is a detector installed in the ice of the South Pole. ICZCUb&af;

50 meters — :-__’:Z-:I{:}".-’.-’ =
Charged particles emit Cherenkov light as they propagate through the TceCube Array
ice. There are strings of 60 optical modules each. 86 strings, 60 sensors each
5,160 optical sensors
From the detected light, the detector reconstructs the direction of arrival 1,450 meters —— (1 ff,‘ff,’,gi"o';eﬁm,.zed
and the energy of the charged particles. L ) Tor fow energies
= e Eiffel Tower
o . A 324 meters
. . .« . 2,450 meters i
Since 2013, the detector has revealed that, in addition to particles 2820 maters

produced in the Earth's atmosphere, there is a new population of
neutrinos with energies up to about 10 PeV.




IceCube

highlights

new population seen as

1.

neutrino induced muons from
surrounding ice/rock

neutrino entering the detector

special events: taus, Glashow

IceCube Lab

50 meters — - = _.....__-..._.._; .:i ;:

IceCube Array
86 strings, 60 sensors each
5,160 optical sensors

i

1450 meters— il (I il DeepCore
il Egiig | i 6 strings optimized
D ?'*: for low energies
;%g;; E%% S Eiffel Tower
ah i Y. 324 meters

2,450 meters I s |

2,820 meters




IceCube

highlights

IceCube Lab
new population seen as e

50 meters — P ol o Sl o
1. neutrino induced muons from

INg 1 IceCube A
surrounding ice/rock ceCube Array

86 strings, 60 sensors each
5,160 optical sensors

2. neutrino entering the detector (A At
i DeepCore

6 strings optimized

for low energies
,»/

> 1450 meters | ——
3. special events: taus, Glashow it

3 Le :
- st
el ssie 0 3

i) AN weettaaaasereseeeess
O
$E0808 e eecccrececene

Eiffel Tower
. 324 meters

consist of “hard” quasi-power law spectra

2,450 meters
2,820 meters

E~% with moderate compatibility

angular distribution almost isotropic, as
expected from extragalactic population




summary and discussion

on high-energy astrophysical neutrinos

» A discovery of a new component (most likely of cosmic origin)
has been made. Now time to understand what we are seeing.

» Next targets: clear point sources; galactic component.
< Oscillations provide very useful constraints.

< At this point, new measurements are warranted. The results
will have a big impact on high-energy astrophysics.



end of the
first lecture
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Abstract

The luminosity constraint is a very precise relationship linking the power released by the Sun as
photons and the solar neutrino fluxes. Such a relation, which is a direct consequence of the
physical processes controlling the production and the transport of energy in the solar interior, is
of great importance for the studies of solar neutrinos and has a special role for the search of
neutrinos from the CNO cycle, whose first detection with a 50 significance has been recently
announced by the Borexino collaboration. Here we revise the luminosity constraint, discussing

and validating its underlying hypotheses, in the light of latest solar neutrino and luminosity
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light Is measured very precisely and is closely
related to neutrinos

2 El/
10 MeV
pep pp
Photons take a long and tortuous path
o o
*He + He

SHe + p (?7)
l?’He 1+ “He
~ —~ "
E.C. 1+ p
Be > T4

<«
o
@
_|_
i

%J
Y
‘o@" J
CD*



Table 6. The central value, in units of 10'° cm~%s™!, of the constraint (with 0.2%
precision) as described in Eq. (34), including the various refinements of Section 4.

corrective terms  GS98 PLJ14 average
none 5.9937 5.9937 5.9937
L3y, 5.9995 5.9997 5.9996
L3ye + Liay 6.0004 6.0006 6.0006
Lsge + Liaxy + L,  6.0031 6.0032 6.0031

®,, + 0.946 Pcno = 6.003 (1 +0.2%) x 10" cm %57






Relic (D.S.N.B.) Neutrinos

Cumulative Distribution in Super—Kamiokande
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a race of neutrinos and photons

A I‘ <ut.a \S '73': nu‘u




Mass Bound from SN19K7A

without

astroph.
uncertain
ties

with
astroph.
uncertain
ties

SN at 10
kpc in
Super-K

7 MASS (electron based)

Those limits given below are for the square root of m12/(eff) = > Iueilz
d _
mlzj.. Limits that come from the kinematics of SH3 ™ & decay are the
!

— 2(eff .
square roots of the limits for mu( ) Obtained from the measurements

e
reported in the Listings for “v Mass Squared,” below.

VALUE (eV) CL% DOCUMENT 1D TECN COMMENT

< 2 OUR EVALUATION

e 95 1 KrRAUS 05 SPEC 3H 3 decay

< 2.5 95 2 LOBASHEV 99 SPEC 3H 3 decay

e o o \We do not use the following data for averages, fits, limits, etc. e o @

< 5.8 95 3 PAGLIAROLI 10 ASTR SN1987A
<217 90 4 ARNABOLDI 03A BOLO 187Re 3-decay
<57 95 5 LOREDO 02 ASTR SN1987A

P R - ac O \WWEINMEIMER Q0 <SPEC 34U A2 Aarmaw
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ELSEVIER

On the rate of core collapse supernovae in the
milky way

Karolina Rozwadowska ® 2, Francesco Vissani = Enrico Cappellaro ©

Show more

+ Add to Mendeley <« Share 99 Cite

https://doi.org/10.1016/j.newast.2020.101498 Get rights and content

Highlights

« For neutrino astronomy, the knowledge of the rate of core collapse
supernovae is of essential importance.

« We use the best available information to update its study and to obtain
the state-of-the-art value: R = 1.63 + 0.46/century.

« We discuss the consistency of the results and point out the critical
aspects in this inference.



R =1.63+£0.46 CCSN per century,

= T =611 yr

the chances of seeing at least one event are
P(>0)=7.9%, 15.0%, 27.4% and 53.7%

when the time of observation 1s

t =15,10,20 and 50 yr




1(K): Best estimate, this paper

1(j): Combination of (f-i), this paper
1(1): Rest of Local Group

1(h): Andromeda

1(g9): Milky Way neutrinos

1(f): Milky Way optical

1(e): Combination of (a-d)

P———————————————————————1 (d): Neutron star birthrate (Keane & Kramer 2008)

1(c): Al-26 (Diehl et al. 2006)
1(b): Extragalactic SN rates (Li et al. 2011)
1(a): Stellar Birthrate (Reed 2005)
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Abstract.

This paper is an introduction to neutrino astronomy, addressed to astronomers and written by
astroparticle physicists. While the focus is on achievements and goals of neutrino astronomy,
rather than those of particle physics, we will introduce the particle physics concepts needed to
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