

Plasma, Photons and Black Hole Bombs

Enrico Cannizzaro Advisor: Paolo Pani

PhD Seminars

Work done in collaboration with:

Andrea Caputo

Tel Aviv University and Weizmann Institute of Science

Laura Sberna Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam

Anatomy of spinning black holes

Black Holes (BHs) are vacuum solutions of Einstein's General Theory of Relativity

BHs are simple objects: they can be described by only three parameters (no-hair theorem):

Black Holes in the Universe

Ligo-Virgo collaboration

EHT collaboration

Energy Extractions from spinning BHs: Two gendankenexperiments

BH powered circuit:

ring and shafts are forced to spin with BH, turn the magnet over and produce a current

Penrose process: particle decay inside ergoregion.

The particle that escapes at infinity has more energy that the original one (conservation of energy)

Superradiant Scattering

Bosonic waves scattering off spinning BHs can be amplified via superradiance

Extraction of energy and angular momentum from the BH

R. Brito, V. Cardoso, and P. Pani "Superradiance: New Frontiers in Black Hole Physics", 2015

A physical interpretation: surfing bosons

 $\omega/m < \Omega_H$ ω/m : Angular phase velocity of the wave

If the angular phase velocity of the wave<angular velocity of BH, energy extraction!

If the surfer is slower than the wave, is accelerated by it. Otherwise, it loses energy

Superradiant Instability: The role of confinement

If superradiance is supported by confinement of the modes, an instability arises.

Realistic Confinement can be provided by:

• A mass naturally confining low energy modes

Gravitational Atom

Bosons populates (quasi) bound states around a BH just like a "gravitational atom", but...

- No Fermi principle!
- Dissipation (GWs, flux across the BH)

Efficient for:

$$M\mu = \left(\frac{M}{10M_{\odot}}\right) \left(\frac{m_b c^2}{10^{-12} eV}\right) M_{pl}^{-2} \sim 1 \quad \longrightarrow \quad m_b c^2 \sim 10^{-19} - 10^{-10} eV$$

The cloud can extract up to 29% (10%?) of the BH mass

BHs as particle detectors

8 orders of magnitude in the boson's mass

Ultralight bosons can be probed ONLY via their gravitational interaction

Cardoso+, JCAP, 2018

Plasma: The fourth state of matter

Another possibility: Standard Model photons

Problem: photons are massless

However, sometimes, nature provides its own mirrors: plasma

Plasma is a ionised gas, composed of positive ions and dissociated, free electrons.

• Is globally neutral, but several electric and magnetic field can characterise plasma at different scales of length.

Why is it important?

The 99% of the visible universe (excluding Dark Matter and Dark Energy) is in the plasma state (fourth state of matter). Is therefore crucial in cosmology and astrophysics!

Why in BH Physics?

Astrophysical BHs are surrounded by plasma! (accretion disks, interstellar medium)

Collective Behaviors in a Plasma: Perturbation theory

What happens if a plasma is subject to a small charge perturbation?

- $E = -\frac{en\delta x}{d}$ lons (heavy) stay fixed
- Electrons are displaced

Electric field created by displacement:

$$m_e a = m_e \frac{d^2 \delta x}{dt^2} = eE = -\frac{e^2 n \delta x}{m}$$

Electrons behave as a system of coupled oscillators!

The frequency of oscillations is the plasma frequency

$$\omega_p = \sqrt{\frac{n_e e^2}{m_e}}$$

The Photon-Plasma system

Photons propagating in a plasma are dressed with an effective mass equal to the plasma frequency

"Effective Mass":

 $\omega_p = 1$

2.5

 $\frac{n_e e^2}{m_e}$

Modified dispersion relation:
$$\omega^2 = k^2 c^2 + \omega_p^2$$

If $\omega > \omega_p$ the wave propagates (plasma is transparent)

This is a cutoff! Plasma can confine radiation and behave as a mirror!

The Instability: Interstellar medium

Cannizzaro+, PRD, 2020 Cannizzaro+, PRD, 2021

Accretion disk: Black Hole Bombs

Astrophysical BHs accrete plasma at extreme densities in their vicinities. The accretion disks are truncated at a certain radius and are able to confine radiation near the BH, in a similar way to a BH bomb.

Dima+, CQG, 2020

Ongoing Research

• Relativistic effects can hamper the instability

$$\omega_p = \sqrt{\frac{ne^2}{m}} \qquad \longrightarrow \qquad \omega_p = \sqrt{\frac{ne^2}{m\gamma}} = \sqrt{\frac{ne^2}{m(1 + \frac{e^2 E_{SR}^2}{m^2 \omega^2})}}$$

Is it true? If yes the alternatives:

Analyse plasma BH bomb system where you circumvent the obstacle

Spontaneous Superradiant Instabilities by accretion disk in scalar tensor theories , In Preparation Generalise to plasma effects in Dark photon superradiance