

LHCb experiment @ CERN

Masterclass 2022

Perugia 09.03.2022

Viacheslav Duk INFN Perugia

hands on particle physics

Outline

- Matter and antimatter
- Accelerators at CERN
- LHCb experiment
- Your measurement

Matter and antimatter

- Matter consists of particles (MP)
- Antimatter consists of antimatter particles (AP)
- Antimatter particles: same mass, opposite electric charge
- MP and AP always produced in pairs
- MP + AP = annihilation

Antimatter prediction

- Dirac (1928): equation of relativistic motion of an electron
- Two solutions (like x²=4): particle and antiparticle

Antimatter discovery: Anderson, 1932

Evolution of the Universe

Evolution of the Universe

Big bang theory and accelerators

Big bang theory describes evolution of the Universe

- First 3 minutes after BB (14*10⁹ years ago): very hot and dense
- Fast expansion
- Primordial soup: Universe was made of fundamental particles at high energies

If we want to understand what happened to antimatter, we must recreate conditions of the early Universe

Experiments with particles at accelerators with particles at high energies

Accelerators

Time machine

- Higher energies earlier times of the Universe
- At LHC the conditions of first 3 minutes after the Big Bang are reproduced

Smallest scales can be studied

Energy unit in particle physics

- 1 eV = 1.6*10⁻¹⁹ J
- 1 TeV = 10¹² eV

LHC at CERN

- 14 TeV total energy
- λ~10⁻¹⁹ m

Colliders

- Accelerate two groups (beams) of particles
- Collide beams
- Particle energy can be used for the production of new particles

Key formula: **E = mc²**

Trajectories of particles produced in a collision

Experiments in high energy physics

Key ingredients

Accelerator

• Accelerate particles to high energies and collide them

Experimental setup

Detectors to measure particles produced in collisions

Computers

• Store collected data

Manpower

- Physicists, engineers, technicians
- Project, create and maintain

Accelerator complex at CERN

CERN Accelerators protons antiprotons 2016 0.999999c by here ▷ ions 13 TeV collision neutrons 6.5 TeV 6.5 TeV Protons are accelerated in several neutrinos LHC electrons steps almost to the speed of light Large Hadron Collider Prévessin 2015 6.5 TeV 2010 3.5 TeV LHC is the last step North Area 2009 LHC 1989 LEP 27km 17mi Beam collision: 7 TeV + 7 TeV 4 main collision points (and 4 main 450 GeV Ar 🗸 TT40 experiments) TT20 SPS Super Proton Synchrotron 1976 7km 4mi AWAKE HiRadMat 2016 2011 TT60 TT70 TT10 AD 0.87c by here Meyrin Antiproton Decelerato East Area 1999 182m 1964 26 GeV 1967 ISOLDE PS -----Isotope Separator OnLine Device ≽ Proton Synchrotron n-ToF 1959 628m LINACS 🕌 CTF3 Linear Accelerators neutron Time of Flight Compact Linear Collider Test Facility 2001 0.3c by here 1.4 GeV LEIR PSB Low Energy Ion Rina LINAC3 roton Synchrotron Booster Start the protons out here Linear Accelerator 3 2005 78m PS 1972 157m SPS LHC per Z per ion Lead ions: 4.2 MeV 72.2 MeV 5.9 GeV 177 GeV 2.6 TeV 6.5 TeV 533 TeV 208 Pb 27+ 54+ 82+ © 2010-2016 maalpu.org incl detail © CERN

•

•

LHC at CERN

- 27 km long
- 100m under ground
- Both in France and Switzerland
- Proton energy: 7+7 = 14 TeV
- Proton beams collide 40 million times per second
- ~10⁹ collisions per second

Experiments at LHC

CMS

ATLAS

LHCb

ALICE

Experiments at LHC

CMS, ATLAS

- Discovery of the Higgs boson
- Study of Higgs properties
- Search for new particles and interactions beyond the Standard Model

LHCb

- Matter-antimatter asymmetry
- Study of rare decays
- Search for new particles and interactions beyond the Standard Model

ALICE

- Study of heavy ion collisions
- Quark-gluon plasma

Let's go to LHCb!

LHCb setup

- weight: 57 tonnes
- Length: 20 m
- Width: 13 m
- Height: 10 m

Collaboration

- 1400 members
- 18 countries

LHCb detectors

LHCb physics

- In a proton collision a lot of particles produced
- Most of them are unstable and decay into other particles

Which processes we want to study at LHCb

- Decays of B mesons (with b-quark)
- Decays of D mesons (with c-quark)
- Decays of K mesons and hyperons (with s-quark)

How we can identify different decays

- Detect particles produced in meson decays
- Reconstruct the decay vertex
- calculate the total energy in the center-of-mass system (cms) to identify the parent particle
 - Example: $B_s \rightarrow \mu^+ \mu^-$
 - Measure muons
 - Calculate the total energy of two muons in cms, should be equal to the B_s mass

Standard Model of Elementary Particles

• • •

Particle detection

What we really measure

- Time
- Coordinates
- Energy released when passing through a detector

What we can calculate

- Particle track
- Momentum
- mass

Particle detection at LHCb

Event and decay reconstruction

Perugia @ LHCb

Perugia activities

- Detector part: Light leak detector (LLD) for the RICH
- Data analysis: search for new particles in decays of • B mesons and hyperons

RICH detector

- Cherenkov light is produced when particles pass through the • detector
- Light sensors are sensitive to single photons
- Light sensors should be isolated form the environmental light

Light leak detector (light sensors to control the darkness)

LLD installation at CERN

Electronics to read signals from the LLD

R&D tests in Perugia

LHCb masterclass

Your measurement

What you will measure

- Mean lifetime of D⁰ meson
- Mass of D⁰ meson

Why it is important

- D⁰ and anti-D⁰ could have slightly different properties
- This could lead to matter-antimatter asymmetry

How we measure

- D^0 could decay to $K^- \pi^+$
- Measure K^- and π^+
- Reconstruct the decay vertex
- Calculate the cms energy and D⁰ mass

Your measurement

Decay law: N(t) = N(t=0)*exp(-t/ τ) τ is the mean lifetime: N(t=0)/N(τ) = 2.7

D⁰ lifetime: 0.4*10⁻¹² s

How to measure τ ?

• Measure distance: $c^*\tau = 0.3$ mm for slow (non-relativistic) D^0

Relativistic D⁰ (e.g. @LHCb)

- Lifetime in the laboratory frame: $t_{lab} = t_{cms} / \sqrt{(1-v^2/c^2)}$
- Mean lifetime of D⁰ @LHCb in the laboratory frame ~1 cm

Conclusions

LHCb is one of four major experiments @ LHC

LHCb primary goal is to study matter-antimatter asymmetry

LHCb deals with decays of unstable particles produced in proton-proton collisions

Decay products are measured by detectors

□ You will measure the D⁰ mass and lifetime

