Kaonic atom experiments with TES microcalorimeters

Tadashi Hashimoto (JAEA)

High precision measurements of kaonic atoms, Laboratori Nazionali di Frascati, 9th February 2022

Transition-Edge-Sensor microcalorimeters

NIST(US) TES spectrometer for E62

Review of Scientific Instruments 88, 053108 (2017)

- Cooled down to 70 mK with ADR & pulse tube.
- 240 pixel: 8 columns x 30 rows time-division multiplexing (TDM) readout
- ~23 mm², 85% eff.@6 keV (Mo/Cu + Bi 4um)
- First case to operate in a hadron beam environment.

History of the project

2013	Start collaboration with NIST
2014	Demonstration experiment @ PSI (pionic atom)
2015	Approved as J-PARC E62
2016	Commissioning with K- beam @ J-PARC
2017	IEEE Trans. Appl. Supercond. 27(4), 1-5, 2017.
2018	Physics data taking for K ⁻ atom @ J-PARC, ~18 days
	J. Low Temp. Phys. 199 , 1018–1026 (2020)
2022	PRL paper accepted !!

T. Hashimoto,^{1,2,*} S. Aikawa,³ T. Akaishi,⁴ H. Asano,² M. Bazzi,⁵ D. A. Bennett,⁶ M. Berger,⁷ D. Bosnar,⁸ A. D. Butt,⁹ C. Curceanu,⁵ W. B. Doriese,⁶ M. S. Durkin,⁶ Y. Ezoe,¹⁰ J. W. Fowler,⁶ H. Fujioka,³ J. D. Gard,⁶ C. Guaraldo,⁵ F. P. Gustafsson,⁷ C. Han,² R. Hayakawa,¹⁰ R. S. Hayano,¹¹ T. Hayashi,¹² J. P. Hays-Wehle,⁶ G. C. Hilton,⁶ T. Hiraiwa,¹³ M. Hiromoto,⁴ Y. Ichinohe,¹⁴ M. Iio,¹⁵ Y. Iizawa,³ M. Iliescu,⁵ S. Ishimoto,¹⁵ Y. Ishisaki,¹⁰ K. Itahashi,² M. Iwasaki,² Y. Ma,² T. Murakami,¹¹ T. Nishi,¹⁶ H. Noda,¹⁷ H. Noumi,¹³ K. Nunomura,¹⁰ G. C. O'Neil,⁶ T. Ohashi,¹⁰ H. Ohnishi,¹⁸ S. Okada,^{19,2,†} H. Outa,² K. Piscicchia,⁵ C. D. Reintsema,⁶ Y. Sada,¹⁸ F. Sakuma,² M. Sato,¹⁵ D. R. Schmidt,⁶ A. Scordo,⁵ M. Sekimoto,¹⁵ H. Shi,⁷ K. Shirotori,¹³ D. Sirghi,⁵ F. Sirghi,⁵ K. Suzuki,⁷ D. S. Swetz,⁶ A. Takamine,² K. Tanida,¹ H. Tatsuno,¹⁰ R. Nagatomi,⁴ C. Trippl,⁷ J. Uhlig,²⁰ J. N. Ullom,⁶ S. Yamada,¹⁴ T. Yamaga,² T. Yamazaki,¹¹ and J. Zmeskal⁷

(J-PARC E62 collaboration)

¹Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai 319-1184, Japan ²RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Japan ³Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan ⁴Department of Physics, Osaka University, Toyonaka 560-0043, Japan ⁵Laboratori Nazionali di Frascati dell' INFN, Frascati I-00044, Italy ⁶National Institute of Standards and Technology, Boulder, Colorado 80305, USA ⁷Stefan-Meyer-Institut für subatomare Physik, Vienna A-1090, Austria ⁸Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia ⁹Politecnico di Milano, Dipartimento di Elettronica, Milano, Italy ¹⁰Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan ¹¹Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan ¹²Japan Aerospace Exploration Agency (JAXA), Kanagawa, Japan ¹³Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan ¹⁴Department of Physics, Rikkyo University, Tokyo 171-8501, Japan ¹⁵High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan ¹⁶RIKEN Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198, Japan ¹⁷Department of Earth and Space Science, Osaka University, Toyonaka 560-0043, Japan ¹⁸Research Center for Electron Photon Science (ELPH), Tohoku University, Sendai 982-0826, Japan ¹⁹Engineering Science Laboratory, Chubu University, Kasugai 487-8501, Japan ²⁰Chemical Physics, Lund University, 22100, Sweden

(Received 25 November 2021; accepted 25 January 2022)

E62 setup @J-PARC K1.8BR

6

J-PARC E62 results ~14-day data taking

 \checkmark Asynchronous background contribution is negligible

✓ Most of background come from stopped kaon absorptions

J-PARC E62 Fitting Results

Comparison with past experiments

Systematics errors (20211018)

	³ He shift	³ He width	⁴ He shift	⁴ He width	
stat.	0.40	0.99	0.27	0.63	
syst.	0.18	0.38	0.11	0.33	quad. sum
calibration	0.17		0.09		
resolution	0.01	0.15	0.01	0.11	
tail	0.03	0.10	0.03	0.10	fraction ±10%, length ±20%
binning	0.05	0.10	0.05	0.10	0.5/1/2 eV bin, shift half a bin
background	0.01	0.10	0.02	0.20	compare pol0/pol1/pol2
fit range	0.01	0.30	0.01	0.20	min / max
robustness	0.05	0.33	0.05	0.30	binning + bg + fit range

 \checkmark Precision of the absolute energy scale is the dominant systematics

In-beam calibration

✓ X-ray tube was always ON during the experiment

✓ Pixel-by-pixel calibration every 4~8 hours

Difficulties in Calibration

Difference between calibration with all 7 points & calibration without FeKa

Run dependence of the FeKa peak position

 Calibration curve = Non-linear energy response of the TES is not known precisely, differs by pixel, and changes in time.

 \rightarrow Interpolation uncertainty. need good calibration line near the science line

14 Response function: not a problem Gaussian plus a low-energy exponential tail Energy dependence of the tail parameters is well under control $\times 10^4$ intrinsic 0.24 w/o tail 1.0 spillon fit spillon_fe data spillon femeta 0.22 0.8 spilloff ail fraction e< Counts / 1 0.20 0.6 K_{α} lines 0.18 0.4 0.16 0.2 8 6 0.0 6880 6900 6920 6940 Energy (keV) Energy (eV)

- We understand the response function rather well.
- Uncertainty of the tail parameters does not affect peak position so much (+-10% -> 0.03 eV)

Difficulties in charged-beam environments

Resolution deterioration by beam

- Small bumps by charged-particle hits on array deteriorate resolution
- In E62: 180 cps from X-ray tube + 20 cps (triggered pulses) from Beam
 -> 100 count /spill / array ~ effectively 0.5 cps/pixel from beam
- We partically recovered the resolution at a cost of 1/3 event loss.
- Important to shield from charged particles as much as possible.

17 Charged-particle background 90% transmission @ 6 keV, 0.1 mm plastic In-beam spectrum w/o photon source at PSI X-ray thin scintillator? 300 Data ····· MC(all) 250 MC(proton) collimato ≥ 200 ---- MC(e) ----- MC(e⁺) Counts / -··- MC(γ) science pix 50 anti-co pix 00 2000 10000 4000 6000 8000 Energy (eV) **Charged particle**

- MIP particles give keV energies on 4um-thick Bi absorber
 -> main background in the final X-ray spectrum
- I would like to consider VETO counter in front of the TES.

Future propescts

K- atom with TES: Future propescts

- Present system is applicable up to 15 keV, limited by TES saturation and stopping power of 4 um thick Bi absorber
 - Strong interaction in light kaonic atoms (K^{-6/7}Li, …)
 - Charged kaon mass (K-N, K-O, K-Ne, …)
- New system for higher energy up to 100 keV region is under development for a muonic atom project (QED test under strong electric field)
 - Upper level of high-Z kaonic atoms to separate 1N/mN contributions (proposed in NPA 915 (2013) 170–178)
 - Σ -atoms, Ξ -atoms etc...
 - Many unknown technical issues: detector performance, calibration lines, …

More pixels with new readout

Douglas Bennett @ NIST

Rapidly improving scalability using the new readout technology.

TES under development

Douglas Bennett @ NIST

	J-PARC E62	Gamma-ray	50 keV	20 keV
Saturation energy	20 keV	150 keV	70 keV	50 keV
Absorber material	Bi	Sn	Au/ Bi	Au/Bi
Absorber thickness	4 um	120~250 um	3 um / 15 um	1.5 um / 15 um
Absorber area	320 x 305 um	1.3 x 1.3 mm	700 x 700 um	700 x 700 um
Pixel number	240	96	150	150
Total collection area	23 mm²	160 mm ²	70 mm²	70 mm²
ΔE (FWHM)	5 eV @ 6 keV	40 eV @ 130 keV	20 eV @ 40 keV	8 eV @ 20 keV

VNew cryostat, new readout system

 \checkmark Available soon (for μ -atoms)

✓ Multiple units can be installed

(Near) future low-E TES

80% efficiency upto 20 keV with 8 eV FWHM resolution

X-ray line candidates for low-E TES

	Z	ρg/L @STP	boiling point	9-8	8-7	7-6	6-5	5-4	4-3	3-2
He	2	0.1785	4.2						dor	6.2 6.4
Li	3	534								15.1 15.3
K- N	7	1.250	78			4.6	7.6	14	30	
K- 0	8	1.429	90.2			6	10	18	40	
K- Ne	10	0.900	27	4.2	6.1	9.4	15.6	28.8	62	

- Kaon mass: N₂, O₂, Ne, …
 - multiple lines, targets, densities should be measured
- Strong interaction: K-6/7Li 3d-2p
 - shift 6~15 eV, width 30~40 eV depending on potential models

Rough yield, precision at DAFNE

- E62 TES array (Bi 4um, 23 mm²) at 6 cm from target center
- N₂ target, ϕ 10cm x L10cm, at -15cm from IP
 - 0.15MPa, 120K (or 0.375MPa@300K)

			PDG error: 13
K mass error (keV)	18.58	21.67	19.30
statistical error (eV)	0.23	0.44	0.59
resolution (FWHM)	6	8	10
X-ray count / month(20d)	127.5	60	52.5
X-ray count / day	6.375	3	2.625
Efficiency	85%	40%	35%
X-rays on detector	7.5	7.5	7.5
TES acceptance		0.03%	
X-ray yield		50%	
stopped K / day (5 pb ⁻¹)		50000	
X-ray energy (keV)	6	10	15

Rough yield, precision at DAFNE

- new TES array (Bi 15um, 70 mm²) at 6 cm from target center
- N₂ target, ϕ 10cm x L10cm, at 15cm from IP
 - 0.15MPa, 120K (or 0.375MPa@300K)

K mass error (keV)	13.25	8.58	5.90
statistical error (eV)	0.16	0.17	0.18
resolution (FWHM)	8	8	8
X-ray count / month(20d)	445.5	382.5	360
X-ray count / day	22.275	19.125	18
Efficiency	99%	85%	80%
X-rays on detector	22.5	22.5	22.5
TES acceptance		0.09%	
X-ray yield		50%	
stopped K / day (5 pb ⁻¹)		50000	
X-ray energy (keV)	6	10	15

PDG error: 13keV

Summary

- TES microcalorimeters are unique detector to realize both an eV-scale energy resolution & reasonable collecting efficiency.
- We have successfully measured kaonic helium 3d→2p X-rays with TES in J-PARC E62. Letter was recently accepted by PRL.
- Challenges to use TES in kaonic-atom experiments.
 - Absolute energy calibration
 - Energy resolution deterioration by charged-particle hits
 - Charged particle background
- TES detector technology is rapidly advancing.
 More pixels and for higher energies.
- TES at DAFNE would be feasible. (in terms of X-ray yield)