

VERITAS Highlights 2022

Conor McGrath - University College Dublin VERITAS Collaboration

- VERITAS: Very Energetic Radiation Imaging Telescope Array System
- Prototype SCT telescope for CTA on site
- Located in Southern Arizona, USA

VERITAS

- Full array operations begin: 2007 15 years of operation
- Currently ~100 members in total
- <u>News: Funded to operate through 2025</u>
- Funded by National Science Foundation (USA), Smithsonian Astrophysical Observatory (USA), Natural Sciences and Engineering Research Council (Can), Helmholtz Association (Ger)

VERITAS Performance + Observations

- FOV 3.5 deg (diameter)
- Energy range: ~85 GeV to ~30 TeV
- Effective Area: 10⁵ m² @ 1TeV
- Ang. resolution: 0.08° resolution @ 1 TeV
- Sensitivity: 1% Crab in 25 hours
- Energy resolution: ~17%

- Runs September July
- ~950 hrs dark time, ~250 hrs bright moon (30-65% illum.).
- Optical stellar intensity interferometry during full moon (> 65%)
- Remote observing capabilities introduced during lockdowns now a long term option

Long-term instrument response well understood: (Adams et al., A&A 658, A83 (2022)):

Gamma Ray Science Programme

Galactic: PeVatrons with VERITAS

- Tycho's SNR : 147 hrs: E_{cut} (TeV) = 1.70 ± 1.23 (2σ) (Archambault et al, 2017)
- Cassiopeia A : 65 hrs: E_{cut} (TeV) = 2.31 ± 0.51 (4σ) (<u>Abeysekara et al, 2020</u>)

LHAASO J2108+5157 + LHAASO J0341+5258

- New LHASSO sources with no VHE counter-parts
- Location, morphology, and broadband spectra unknown
- LHAASO J2108+5157: 35hrs no detection in point like (0.09) or extended (0.25 deg)
- LHAASO J0341+5258: 23hrs no detection in point like (0.09) or extended (0.25 deg)

Gamma Ray Binaries

VERITAS has detected 3 systems: HESS J0632+057, LS I +61 303 and PSR J2032+4127

HESS J0632+057

- 450 hrs over 15 years (VERITAS, MAGIC, HESS)
- Orbital period measured in gamma-ray consistent with X-Ray
 - Gamma : 316.7 ± 4.4 days, X-Ray : 317.3 ± 0.7 days
- Gamma and X-Ray Fluxes highly correlated

LS I +61 303

- 180 hrs over 12 years
- Rapid variability on <1 day timescales
- TeV and X-Ray emission well correlated on short timescales
- Detected at all orbital phases
 - No evidence for spectral variability

Extra-galactic: Blazars and Radio Galaxies

Science Drivers

Jet physics, EBL, Intergalactic Magnetic Field, Particle processes and acceleration . mechanisms, neutrino/cosmic ray origin. Blazars with uncertain redshift: 7

Blazar

1ES 0647+250

3C 66A

RGB J2243+203

PG 1553+113

1ES 0033+595

HESS J1943+213

RGB J2056+496

AGN

M 87

NGC 1275

IC 310

3C 264

Type

HBL

IBL

HBL

HBL

HBL

HBL

Blazar

Radio Galaxies : 4

Type

FRI

FRI

FR I/HBL

FRI

z

>0.29

0.33 < z < 0.41

>0.39

0.43 < z < 0.58

0.467?

? 2

z

0.004

0.018

0.019

0.026

Observations

- ~ 200 hrs/year •
 - Monitoring & ToO (self-triggering) 0
- Multiwavelength coverage
- Simultaneous observations with IXPE (2022-2025)

Multi-year projects

- HBL luminosity function
- Nightly Mrk 421 snapshots
 - Looking for a repeating flaring pattern 0

Flaring

- OJ 287 2017 flare
- Mrk 421 giant 2010 flare (<u>Abeysekara at al., ApJ, 890, 97 (2020)</u>) FSRQs (3C 279, PKS 1222+216, and Ton 599) (<u>Adams et al., ApJ, 924, 95 (2022)</u>) •
- Radio Galaxies

Blazars with well measured redshift: 30

Blazar	Туре	z
Mkn 421	HBL	0.030
Mkn 501	HBL	0.034
1ES 2344+514	HBL	0.044
1ES 1959+650	HBL	0.047
1ES 1727+502	HBL	0.055
BL Lac	IBL	0.069
1ES 1741+196	HBL	0.084
W Comae	IBL	0.102
VER J0521+211	IBL	0.108
RGB J0710+591	HBL	0.125
H 1426+428	HBL	0.129
B2 1215+30	HBL	0.131
S3 1227+25	IBL	0.135
1ES 0806+524	HBL	0.138
1ES 0229+200	HBL	0.139
1ES 1440+122	HBL	0.163
RX J0648.7+1516	HBL	0.179
1ES 1218+304	HBL	0.182
RBS 0413	HBL	0.190
1ES 1011+496	HBL	0.212
MS 1221.8+2452	HBL	0.218
RBS 1366	HBL	0.237
1ES 0414+009	HBL	0.287
OJ 287	LBL	0.306
TXS 0506+056	HBL	0.337
1ES 0502+675	HBL	0.341
PKS 1222+216	FSRQ	0.432
PKS 1424+240	IBL	0.601
Ton 599	FSRQ	0.720
PKS 1441+25	FSRQ	0.939

Radio Galaxies

Larger viewing angle than Blazars

• Aids understanding of jet physics

Long-term monitoring of all detected radio galaxies:

- M87: Including and excluding EHT campaign
- NGC 1275: 8 years of VERITAS and MWL (X-ray radio) data

Ongoing discovery program

- 4C +39.12:
 - \circ 11 hrs: 0.17 σ
- 3C 303:
 - 9.5 hrs: 1.23σ
- B2 1113+29:
 - 9.5 hrs: 0.89σ

3C 264 discovery Archer el al, (2020)

VHE detected Radio Galaxies

VERITAS detected so far

Name	Cross-ID	Туре	Distance	BH mass [10 ⁸ Msun]	
Cen A	NGC 5128	FR 1	3.7 Mpc	(0.5-1)	
M87	NGC 4486, Virgo A	FR 1	16 Mpc	(20-60)	
NGC 1275	3C84, Perseus A	FR 1	70 Mpc	3-4	
IC 310	B0313+411	FR I/BL Lac	80 Mpc	3 [0.3?]	
3C 264	NGC 3862	FR I	95 Mpc	4-5	
PKS 0625-35	OH 342	FR I/BL Lac	220 Mpc	~10	

Rieger & Levinson 2018

HBLs

UCD DUBLIN

- Ongoing study to derive the luminosity function of HBLs
- The 3HSP catalog (Chang et al. 2019, A&A, 632,77) uses radio and X-ray data to select high-frequency-peaked BL Lacs.
- 36 objects (21 VHE detected)
- VERITAS search using > 2000 hrs of data extracted unbiased data plus additional if required
- All source exposures > 8hrs

RBS 1366 (RGB J1417+257) - A new detection

- z=0.237
- Synchrotron peak > 10¹⁷ Hz (Keenan et al., 2021)
- Proposed as TeV-peaked BL Lac (Constamante (2020))
- Possible UHECR accelerator (*Twoomey et al., (2020)*)
- 60 hours total including unbiased Luminosity Function study
- <u>Detected at >5σ</u> after analysis of complete data set-10 -
 - <u>A new VHE Extreme HBL</u>
- Flux : ~ 0.5% Crab

MWL data and SSC scaling courtesy of Eileen Meyer

GRBs

- High priority observations Interrupt other observations
- 211 observed to date 127 with a position < VERITAS PSF
 - 16 published in ApJ 743, 62 (2011)
 - 1 in ApJL 795, L3 (2014); 1 in ApJ 857, 33 (2018)
- No detections to date stacked analysis underway

Neutrino Follow-up Program

- Automatic repointing for IceCube alerts 45 hrs/yr on potential neutrino counterparts
- 9 follow ups on real-time neutrino alerts since TXS 0506+056 detection No detections

TXS 0506+056

- VERITAS detection following IceCube
- Monitoring since detection in 2018
- >100 hrs collected
- MWL with Swift and NuSTAR
- Paper in preparation

MAGIC, IceCube, FACT, H.E.S.S. and VERITAS collaborations PoS ICRC2021 960

60°	27/0		60°	Name	Energy [TeV]	Signalness	FACT	H.E.S.S.	MAGIC	VERITAS
		AF		IceCube-171106A	230	0.75	19 h		4.5 h	2.5 h
		20010	8	IceCube-181023A	120	0.28	1 h	<u></u>	_	—
30°	2051-224	×	21,123 30°	IceCube-190503A	100	0.36	—	—	0.5 h	—
These x	× 2012	×	10872 K KIN	IceCube-190730A	299	0.67	_		3.1 h	—
× totest		×	× × 0°	IceCube-190922B	187	0.50	5.4 h		2.2 h	—
31 ⁵ ° 270° 2	25* 180*	135° / 90	0°. 45° i	IceCube-191001A	217	0.59	2.0		2.3 h	1.0 h
				IceCube-200107A	—	_	_		2.7 h	9.5 h
-30°			-30°	IceCube-200926A	670	0.44	W81	1.3 h	1.0 h	
				IceCube-201007A	683	0.88		3.25 h	0.5 h	—
		- market man	Equatorial	IceCube-201114A	214	0.56	-	14.5 h	6 h	7 h
-60%			-60*	IceCube-201222A	186	0.53			—	1.0 h

Gravitational Wave Follow Ups

On Jan 5, 2017 VERITAS follow-up of a GW event GW170104 (GCN #21153). First systematic follow-up of a GW event by an IACT.

O3 LIGO/Virgo run (2019-2020)

- Development of automated tiling algorithm for GW error regions
- 12 GWs followed up

O4 Plans (March 2023)

• Synergise with SCT

 An Archival Search for Neutron-Star Mergers in Gravitational Waves and Very-High-Energy Gamma Rays, <u>Adams</u> <u>et al., ApJ 918, 66 (2021)</u>

Candidata	LICO PNS Candidata	LIGO				VERITAS			
Label	Event ID	$\overline{\frac{\text{FAR}}{(\text{yr}^{-1})}}$	S/N	p-astro (10^{-3})	$\frac{\text{Area}}{(\text{deg}^2)}$	t_{first}	t_{coinc}	Coverage Probability	
C1	2015Oct12T02:40:22.39	142.27	8.42	3.82	2321	-0:11:17	0:18:53	0.22%	
$C2^L$	2015Oct24T09:03:52.00	7.52	9.69	79.6	24218	1:33:08	1:11:08	0.06%	
$C3^H$	$2015 Nov 17 T06:34{:}02.07$	7.52	8.84	181	24221	-0:08:02	2:37:43	0.18%	
C4	$2015 {\rm Dec} 04 {\rm T} 01{\rm :}53{\rm :}39.14$	225.02	9.09	2.5	2909	0:16:20	1:00:00	0.19%	
$C5^L$	$2015 {\rm Dec}06 {\rm T}06{\rm :}50{\rm :}38.17$	77.45	7.72	6.64	24264	-0:09:02	2:10:18	0.15%	
C6	$2015 {\rm Dec}09 {\rm T}07{\rm :}25{\rm :}24.68$	141.65	7.85	3.84	2606	1:36:25	0:15:00	0.03%	
C7	2016Jan02T02:47:29.35	356.13	7.51	1.63	3487	1:44:55	0:30:00	0.18%	

Fast Radio Bursts

- VERITAS performs simultaneous gamma-ray and rapid (ms) optical observations (2-4 pixels)
- VERITAS data on ~11 FRBs (objects) with VHE data overlapping 21 bursts from FRBs detected in radio

Observations are taken simultaneously with CHIME - a radio instrument that has detected > 500 FRBs

Dark Matter

Three dark matter programs:

- **Dwarf Spheroidal Galaxies**
 - ~230 hrs published (S. Archambault et al. 2017) Ο
- Galactic Centre: ~250 hrs
- Sub-halos

Dwarf Spheroidals

- Combined analysis with Fermi-LAT, HAWC, H.E.S.S. and MAGIC
- VERITAS analysis of 960 hrs underway

Summary

- VERITAS has been awarded NSF operations funding through 2025
- VERITAS has a varied science program in galactic, extra-galactic and cosmic-ray astrophysics
- VERITAS has a large data set and welcomes collaboration

VERITAS hybrid Summer Collaboration Meeting 2022 at DESY (Zeuthen)

Summary

- VERITAS has been awarded NSF operations funding through 2025
- VERITAS has a varied science program in galactic, extra-galactic and cosmic-ray astrophysics
- VERITAS has a large data set and welcomes collaboration

VERITAS hybrid Summer Collaboration Meeting 2022 at DESY (Zeuthen)

Summary

- VERITAS has been awarded NSF operations funding through 2025
- VERITAS has a varied science program in galactic, extra-galactic and cosmic-ray astrophysics
- VERITAS has a large data set and welcomes collaboration

VERITAS hybrid Summer Collaboration Meeting 2022 at DESY (Zeuthen)