

### erm Gamma-ray Space Telescope

# **Science with the Fermi Large Aera** Telescope



12<sup>th</sup> Cosmic Ray International Seminar (CRIS 2022)

Naples 12 Sept 2022

**D.Serini** 

on behalf of the Fermi-LAT Collaboration

davide.serini@ba.infn.it



# General overview of the Fermi Mission

- The Fermi Large Area Telescope
- Science with the LAT: source catalogs
- Pulsars and gravitational waves
- Magnetar Giant Flare

# Indirect search of Dark Matter with the Fermi LAT

- Search for WIMPs
- The Sun as target for indirect DM searches

# Conclusions



- The Fermi Gamma-Ray Space Telescope is an International Science Mission exploring the gamma-ray sky by means of its two main instruments:
  - GLAST Burst Monitor (GBM): 8 keV  $\rightarrow$  40 MeV
  - Large Area Telescope (LAT): 20 MeV → > 300 GeV



# Fermi Launch

#### Launched 11 June 2008 from Cape Canaveral Kennedy Space Center – NASA with the Delta II Rocket

- Circular orbit, 565km altitude, 25.6 deg inclination
- Science mission started on August 2008

# Operations mode

Gamma-ray

- Primary mode: sky survey
  - scan entire sky every 3 hours
- Autonomous Repoint Request
  - autonomously commanded pointed observations following detection of bright hard-spectrum GRB
- Target of Opportunity
  - 1 day few weeks in duration:
    - flaring AGN, Novae, Sun, Crab, Binary systems, etc.







# Fermi Large Area Telescope (LAT)

#### Precision Si-strip Tracker (TKR)

Measures incident *γ*-ray direction

- Gamma conversion:  $\gamma \rightarrow e^+e^-$
- 18 XY tracking planes: 228 μm strip pitch
- High efficiency. Good position resolution

# FoV 2.4sr (~ 20% of the sky) scans entire sky every ~3hrs

#### Hodoscopic Csl Calorimeter

Measures the incident γ-ray energy

- Segmented array of 1536 CsI(TI) crystals
- 8.6 X<sub>0</sub>: shower max contained
  - ~ 200 GeV normal (1.5 $X_0$  from TKR included)
  - $\sim~$  1TeV @ 40° (CAL-only)

#### More details in:

*"Fermi Large Area Telescope Performance after 10 Years of Operation"*, The Astrophysical Journal Supplement Series 256 (2021), 1-12.

#### **Anticoincidence Detector (ACD)**

charged particle separation

- 89 scintillator tiles
- First step in the reduction of large charged cosmic ray background
- Segmentation reduces self-veto at high energy

#### **Public Data Release:**

All γ-ray data made public within 24 hours (http://fermi.gsfc.nasa.gov/ssc/) The science tools for data analysis are also provided

#### **Electronics system**

 Includes flexible, highly efficient, multi-level trigger (Reduce data rate from ~10kHz to 300-500 Hz)







# **Science with Fermi LAT**



# The gamma-ray source catalogs

#### Gamma-ray Space Telescope

#### The catalogs drive the LAT science

- Classification of sources
- Population studies
- Possibility of finding new classes of sources
  - Every iteration of the catalog analysis is a deeper view of the gamma-ray sky
- Both general and class-specific catalogs have been released
  - AGNs, Pulsars, GRBs, SNRs, transients...
- Catalogs are usually the baselines for many analyses
  - They trigger deeper study of specific sources
  - Seed for multi-wavelength observation
  - Represent primary information to model any region of interest in the sky

| Acronym      | IRFs/Diffuse Model                                | Energy Range/Duration               | Sources            |                                                                                               |
|--------------|---------------------------------------------------|-------------------------------------|--------------------|-----------------------------------------------------------------------------------------------|
| 1FGL         | P6_V3_DIFFUSE<br>gll_iem_v02                      | 0.1–100 GeV<br>11 months            | 1451 (P)           |                                                                                               |
| 2FGL         | P7SOURCE_V6<br>gal_2yearp7v6_v0                   | 0.1–100 GeV<br>2 yr                 | 1873 (P)           | More details in:                                                                              |
| 3FGL<br>FGES | P/REP_SOURCE_V15<br>gll_iem_v06<br>P8R2_SOURCE_V6 | 0.1–300 GeV<br>4 yr<br>10 GeV–2 TeV | 3033 (P)<br>46 (E) | "Fermi Large Area Telescope Fourth Source<br>Catalog", Astrophys. J. Suppl. 247 (2020), 33.   |
| 3FHL         | gll_iem_v06<br>P8R2_SOURCE_V6<br>gll_iem_v06      | 6 yr<br>10 GeV-2 TeV<br>7 yr        | 1556 (P)           | • "Incremental Fermi Large Area Telescope Fourth<br>Source Catalog", arXiv:2201.11184 (2022). |
| FHES         | P8R2_SOURCE_V6<br>gll_iem_v06                     | 1 GeV–1 TeV<br>7.5 yr               | 24 (E)             |                                                                                               |
| 4FGL         | P8R3_SOURCE_V2<br>gll_iem_v07 (Section 2.4.1)     | 0.05 GeV–1 TeV<br>8 yr              | 5064 (P)           | Currently on 4FGL_DR3 with 12 yrs of data                                                     |

8



- The 4FGL catalog includes more than 6000 sources (4FGL\_DR3 latest version) above 4σ significance:
  - Mostly blazar and pulsars:
    - More than 3000 of the identified or associated sources are active galaxies of the blazar class, and 276 are pulsars
  - 75 sources are modeled explicitly as spatially extended
  - Roughly 1/3 of the sources are unassociated



"Fermi Large Area Telescope Fourth Source Catalog", Astrophys. J. Suppl. 247 (2020), 33.



#### At present the LAT has detected 276 gamma-ray pulsars

- Half of the gamma-ray pulsars were not known before Fermi
- Pulsar science represents an example of successful cooperation between radio, X-ray and gamma-ray astronomers.
  - A Pulsar Search Consortium (PSC) undertook searches at radio and X-ray wavelengths at the positions of unidentified LAT gamma-ray sources.
- For a complete list of the LAT pulsars see: <a href="https://confluence.slac.stanford.edu/display/GLAMCOG/Public+List+of+LAT-Detected+Gamma-Ray+Pulsars">https://confluence.slac.stanford.edu/display/GLAMCOG/Public+List+of+LAT-Detected+Gamma-Ray+Pulsars</a>



More details in:

• *"The Second Fermi Large Area Telescope Catalog of Gamma-ray Pulsars"*, Astrophys. J. Suppl. 208 (2013), 17.



- Gravitational waves can be detected by monitoring the times of arrival of the steady pulses from each pulsar, which arrive earlier or later than expected due to the spacetime perturbations.
  - After large galaxies merge, their central supermassive black holes (SMBH) are expected to form binary systems
    whose orbital motion generates a gravitational wave background (GWB) at nHz frequencies.
  - Using 12.5 years of LAT data to form a gamma-ray pulsar timing array (PTA) formed by 35 bright gamma-ray
    pulsars, it was possible to constrain the emission from the gravitational wave background (GWB).



# High-energy emission from a magnetar giant flare in the Sculptor galaxy

- ➢ Magnetars are the most highly magnetized neutron stars in the cosmos (magnetic field 10<sup>13</sup>−10<sup>15</sup> G).
  - Magnetar Giant Flares (MGFs) from magnetars are rare, short-duration bursts of hard X-rays and soft γ rays
  - Origin of MGFs: Energy release by crustal fractures induced by high magnetic fields
    - ejects hot plasma into the inner magnetosphere
- First discovery of GeV emission from a MGF associated to a Magnetar in the NGC 253 (Sculptor Galaxy) on 15 April 2020 by Fermi LAT



More details in:

- *"High-energy emission from a magnetar giant flare in the Sculptor galaxy*", Nature Astronomy, 2021, 5.4, 385-391.
- Bright transient triggered the Inter-Planetary Network (IPN) on April 15th, 2020
  - Fermi Gamma-ray Burst Monitor (GBM) Trigger at 08:48:05.56 UTC (GRB 200415A)<sup>[1]</sup>

<sup>[1]</sup>Svinkin, D., Frederiks, D., Hurley, K. et al. «*A bright γ-ray flare interpreted as a giant magnetar flare in NGC 253*». Nature 589, 211–213 (2021).



# GRB Localization

 Burst localized with 20 square-arcmin precision through interplanetary Network of gamma-ray detectors most likely originated in the Sculptor Galaxy, DL ≈ 3.5 Mpc

## LAT detected 3 photons

- Maximum test statistic TS=29
- NGC 253 (Sculptur gal.) at 72% localization CL
- Probability of chance coincidence: < 2.9 x 10<sup>-3</sup> (FARs 5 x 10<sup>-4</sup> yr<sup>-1</sup>)

| Time since T0<br>(s) | Energy (MeV) | Distance to NGC<br>253 (°) | Assoc.<br>probability |
|----------------------|--------------|----------------------------|-----------------------|
| 19.18                | 480          | 0.3                        | 0.990                 |
| 180.22               | 1300         | 0.5                        | 0.988                 |
| 284.05               | 1700         | 0.9                        | 0.999                 |

LAT HE emission due to **synchrotron emission** of particle accelerated in the shock propagating into the ISM.









# Indirect searches of Dark Matter with the Fermi Large Area Telescope



# **Dark Matter**

#### Experimental evidences for Dark Matter:

- Galaxy rotation curves
- Gravitational lensing
- > Observational evidence indicates:
  - Non-baryonic
  - Neutral particles (do not interact electromagnetically)
  - Very stable particles with respect to the cosmological time scale

#### Possible theoretical candidate:

- Weakly interacting Massive Particles (WIMPs)
  - Neutralino χ

WIMPs "hunters"









# Indirect searches for dark matter in the GeV gamma-ray sky

sermi Gamma-ray Space Telescope





- DM particles from the galactic halo can be gravitationally trapped by the Sun through scattering interactions with the nuclei in the solar environment
  - The over-density of DM around the Sun or in its core can result in annihilations into SM particles



- > DM signals would appear as an excess on the top of the standard emission:
  - WIMPs annihilating directly into  $\gamma$  pairs  $(\chi \chi \rightarrow \gamma \gamma) \rightarrow$  local *line-like* feature
  - WIMPs annihilating into light mediators  $(\chi\chi \rightarrow \phi\phi)$ :
    - Mediators decaying directly into gamma-ray pairs ( $\phi \rightarrow \gamma \gamma$ )  $\rightarrow$  **box-shaped feature**
    - Mediators decaying with gamma rays in the final states (e.g.  $\phi \rightarrow b\overline{b}, \tau^+\tau^-, \mu^+\mu^- \rightarrow \gamma...) \rightarrow$  smooth spectrum



# Search for line-like and box-like features in the solar gamma-ray spectra

# The Sun is a moving source

- ON/OFF technique analysis:
  - ON Region : centered on the Sun current position
  - OFF Region: centered on the 6 months time-offset position
    - The OFF region is used as control region to constrain the background
- Analysis performed in sliding energy windows
  - Search for possible local features and evaluation of their significance
    - All possible features turn out to be statistically insignificant





#### More details in:

\* "Search for dark matter signatures in the gammaray emission towards the Sun with the Fermi Large Area Telescope", PRD, 102(2), 022003.



# **DM** - nucleon cross section limits (1)

- > The limits on the box feature intensities can be converted into limits on the DM-nucleon cross section by evaluating the capture rate ( $\Gamma_{cap} \propto \sigma$ )
  - Results in agreement with other experiments
    - For further details see M. N. Mazziotta, F. Loparco, D. Serini et al., Physical Review D, 102(2), 022003







- → We have constrained a set of DM models predicting a gamma-ray signal from the Sun through the annihilation of solar WIMPs into long-lived mediators which can decay outside the Sun ( $\chi\chi \rightarrow \phi\phi, \phi \rightarrow b\overline{b}, \tau^+\tau^-, \mu^+\mu^-...$ )
  - These scenarios would yield a smooth  $\gamma\text{-ray}$  spectrum whose shape depends on  $m_\phi$  and  $m_\chi$  and on the mediator decay channel



Submitted to JCAP: Arxiv arXiv:2208.13157



# The LAT remains in excellent operating condition after 14 years in space.

- There are no consumables that will limit the lifetime of the LAT or Fermi.
  - In Fermi's 14th year in orbit, continued monitoring confirms the LAT's ongoing smooth operation.

# Fermi has opened a window on the extreme high-energy Universe

- Exciting results in all fields of gamma-ray astrophysics
  - Many discoveries, many new source classes, many surprises
    - Many results not shown here!

# Fermi-LAT is also an excellent probe of particle Dark Matter

- Indirect search is the technique used to investigate possible DM signals of astrophysical origin
- The Sun is a promising target for indirect DM searches
  - We have searched for possible features in the solar gamma-ray spectrum as DM signatures
    - No evidence of DM signal found in any channel

Upper limits on relevant physical quantities have been set