

M.Bawaj, D. Bonavena, R. Bonnand, E. Capocasa,
<u>M. De Laurentis\*</u>, J. Ding,
B.Garaventa, A. Grimaldi, Y.Guo,
M. Mehmet, E. Polini,V. Sequino, F. Sorrentino, M. Tacca,
H. Valhbruch, M.Vardaro,

Y. Zhao, J-P. Zendri

RIS 2022 12<sup>th</sup> Cosmic Ray International Seminar

Naples, Italy, September 12 -16, 2022

On behalf of the QNR AdV+ System and Virgo Collaboration

# Status of

# Quantum Noise Reduction system in AdV+



Dipartimento di Matematica e Applicazioni "Renato Caccioppoli"





- → Quantum Noise Reduction in Gravitational Waves InTerFerometrical Detectors
- $\rightarrow$  Quantum States interaction with Optical Devices
- $\rightarrow$  Quantum Noise Redection System in AdV+
- → AdV+ Quantum Noise Reduction System commissioning



# Quantum Noise in GW detectors

#### **Noise in GW Interforemeters**





(depend on the specific optical configuration)

couples input amplitude and phase quadratures with output phase quadrature



#### **Interferometer Quantum Noise** ITF OUPLING FUNCTION, $K(\Omega)$ , frequency dependent: in the device band the quadratures noise is frequency dependently 'weighed'



### Interferometer Quantum Noise



Napoli,15 Sept 2022 - CRIS 202

Martina De Laurentis

## **OF**requency Independent Squeezing (FIS)

Frequency Independent Vacuum Squeezed injection

(Current used Vacuum Squeezing sources (OPO) produce FIS in its band>>ITF pand)



The Squeezing Factor can be increased until the antisqueezing at low

frequency remains below the other low frequency noise

Napoli,15 Sept 2022 - CRIS 202

Martina De Laurentis

# Frequency Dependent Squeezing (FDS)





# Quantum States Interaction with the Optical Devices

## Quantum Interaction with Optical Devices



# Quantum Interaction with the Optical Devices





# Quantum Noise Reduction System In AdV+



### FIS in AdV O3

## Motivation

- $\rightarrow$  Improve the sensitivity at high frequencies for O3
- $\rightarrow$  A fundamental step towards the Frequency Dependent Squeezing



#### FIS in AdV O3 results



#### Maximun HF sensitivity improuvement: 3 dB 7 dB produced

(12 dB Maximun produced achivable)





# Frequency Dependent Squeezing

#### Motivation

 $\rightarrow$  Improve the sensitivity in all ITF frequency band for the next scientific run (O4) by injection of 7 dB of Frequency Dependent Squeezing



Martina De Laurentis

## FIS vs FDS systems



#### FDS vs FIS systems





Martina De Laurentis



# AdV+ Quantum Noise Reduction System Commissioning

# **FDS** commissioning RESULTS



# **FDS** commissioning RESULTS



# **FDS** commissioning Next Step

#### **Injection in ITF**



# **FDS** commissioning CONCLUSION

- Estimated Losses Budget
- Max produced SQZ =12 dB;





# Thanks a lot!!!

#### States of Light and vacuum fluctuation

![](_page_25_Figure_1.jpeg)

Minimum Uncertainty States  $\Delta X_1 \Delta X_2 = \frac{1}{4}$ 

A **bright beam** has the same quadrature fluctuations of the **Cuum** Light as 'sensitive' element

its intrinsic quantum fluctuations determines the final sensitivity

We cannot violate the Uncertainty Principle but we can squeeze the quantum fluctuations on one quadrature and 'use' that quadrature as sensitive element

**Squeezed States** 

# Squeezing Measurement: Homodyne Detector

![](_page_26_Figure_1.jpeg)

![](_page_27_Figure_0.jpeg)

#### The AFL squeezer

![](_page_28_Figure_1.jpeg)

![](_page_28_Picture_2.jpeg)

Napoli, 15 Sept 2022 - CRIS 202

![](_page_28_Figure_4.jpeg)

stand alone in-air squeezed that can provide **up to 14dB of squeezing** for downstream application at very low pump powers.

**12dB measured** with diagnostic homodyne detector introducing additional loss, therefore

 MDiehiDerechtin Cascina on January 2018.

#### FDS vs FIS system

![](_page_29_Figure_1.jpeg)

#### FDS vs FIS system

![](_page_30_Figure_1.jpeg)