Precision measurement of the Monthly nuclei fluxes in Cosmic Rays with Alpha Magnetic Spectrometer on the International Space Station

Solar physics with AMS-02

> Large time scale effects (\sim years):
\square intensity variation of CRs
\square charge sign dependence:
\square at solar maximum: diffusion
at solar minimum: diffusion + magnetic drift
$>$ Small time scale effects (\sim days):

- Forbush decrease \& Solar Energetic Particles (SEP)

Solar physics with AMS-02: Nuclei

The Cosmic Rays propagation in the heliosphere is described by Parker equation:

$$
\begin{gathered}
\text { Particle density in } \\
\text { phase space }
\end{gathered} \frac{\partial f}{\partial t}=-\vec{V}_{\substack{\text { Solar wind } \\
\text { convection }}} \quad \begin{gathered}
\text { Diffusion and } \\
\text { Drifts }
\end{gathered} \quad \begin{gathered}
\text { Adiabatic energy } \\
\text { losses }
\end{gathered}
$$

$>$ Velocity dependence of the diffusion tensor: the velocity induces changes in this term for nuclei with different A / Z since $\beta(R)=\frac{R}{\sqrt{R^{2}+(A / Z)^{2}(m c)^{2}}}$
$>$ Difference in spectral shape: the adiabatic energy losses term depends on the spectral shape. If two nuclei have different spectral shape outside the heliosphere (LIS), the last term will be different.

Nuclei with different A/Z or with different LIS have different propagation in the Heliosphere

AMS-02 detector

Particles and nuclei are defined by their charge (Z) and energy (E ~ P)

Both quantities are measured redundantly and independently by the Tracker, TOF, RICH and/or ECAL

AMS-02 Charge Measurement

AMS Periodic Table

Time evolution of the proton, helium, carbon, and oxygen fluxes from 1 GV to 60 GV,

Time evolution: protons and Helium

- p and He fluxes present short and long term variations
\square He flux more modulated with respect p flux
$\square \mathrm{p} / \mathrm{He}$: different velocity and different LIS from numerical model the velocity difference is the main contribution to the time dependence

Time evolution: Carbon and Oxygen

$\square \mathrm{C}$ and O fluxes present short and long term variations as observed on p and He fluxes.
$\square \mathrm{C}$ and O fluxes have the same time evolution above 2 GV)
\square C/O: same velocity, so any time dependence comes from LIS spectral shape differences the flux ratio is constant in time $\rightarrow \mathbf{C}$ and \mathbf{O} LIS have very similar rigidity dependence above 2 GV

Time evolution: Fluxes comparison

Since C and O have the same time evolution, we can perform the $p /(C+O)$ and the $\mathrm{He} /(\mathrm{C}+\mathrm{O})$ fluxes ratios

\square The $\mathrm{p} /(\mathrm{C}+\mathrm{O})$ flux ratio is not compatible with a constant value ($>5 \sigma$) below 3.29 GV
\square The $\mathrm{He} /(\mathrm{C}+\mathrm{O})$ ratio show a small deviation ($\sim 3 \sigma$) from a costant value below 2.4 GV
\square p/C, p/O: numerical model needed to disentangle between velocity and LIS difference
$\square \mathrm{He} / \mathrm{C}, \mathrm{He} / \mathrm{O}$: very similar velocities so any time dependence comes from spectral shape differences

Conclusions

\square AMS-02, operating onboard the International Space Station (ISS) since 2011 May $19^{\text {th }}$, is able to perform precision measurement of the CR nuclei fluxes and their time evolution
\square The current measurement on p, He, C and O fluxes is based on events collected by AMS from May 2011 to Nov 2019 (115 Bartels rotation)
\square The results obtained can give important informations for the development of refined solar modulation models, and for the derivation of the light nuclei LIS in a rigidity range not covered by previous experiments
\square AMS-02 will continue taking data for the entire duration ofithe ISS (at least up to 2030)

