

The Crystal Eye X and gamma ray detector for space missions

F. Garufi – UNINA and INFN-NA on behalf of the Crystal Eye collaboration – Sept. 12th 2022

WHY AND FROM WHERE WE STARTED

Optical, UV, IR, Radio, X

- Several other observatories followed the source evolution for many days. Apparently it is a kilonova.
- It is the first time an astronomical object is studied with so many information from different messengers
- The multi-messenger GW astronomy has born.

GW				
LIGO, Virgo				
N KOV				
Y-lay 🔍				
Fermi, INTEGRAL, Astrosat, IPN, Insight-HXMT, Sv	wit, AGILE, CALET, H.E.S.S., HAWC, Ko	us-Wind		
X-rav				-
Swift, MAXI/GSC, NuSTAR, Chandra, INTEGRAL				
1.0.7				
UV				
Switt, HST			-	
Optical				
Swope, DECam, DLT 40, REM-RO S2, HST, Las Cu	mbres, SkyMapper, VISTA, MASTER, Ma	gellan, Subaru, Pan-STARRS1,		
HCT, TZAC, LSGT, T17, Genini-South, NTT, GROP BOOTES-5, Zatko, ITelescope Net, AAT, Pi of the S	ND, SOAR, ESO-VLT, KM TNet, ESO-VST Sky, AST3-2, ATLAS, Danish Tel, DFN, TS	VIRT, SALT, CHILESCOPE, TOR(05. EABA	08,	
	-,			
IR			•	
REM-ROS2, VISTA, Gemin-South, 2MASS, Spitzer	, NET, GROND, SOAR, NOT, ESO-VLT, F	anata Telescope, HIS T		
Badio				
ATCA, VLA, ASKAP, VLBA, GMRT, MWA, LOFAR,	LWA, ALMA, OVRO, EVN, & MERLIN, M	er KAT, Parkes, SRT, Bildsberg		
-100 -50 0 50	10-2	10-1	100	101
			dave)	10
(-t _c (S)		1-1 _C (1	uaysj	

Single LHO event (SNR 12.8 in L1, 2.52 in V1 – consistent with sensitivity difference), faint localization.

TITLE: GCN CIRCULAR NUMBER: 24170

SUBJECT: LIGO/Virgo S190425z: INTEGRAL SPI-ACS prompt

observation

DATE: 19/04/25 10:27:09 GMT

[...]

After trigger time of S190425z (G330561) we found two pulses with time since trigger, duration, significance and fluence (in counts) above a background as following

+0.5 s, 0.4 s, 3.6 sigma, 900 +/- 250 +6 s, 1 s, 4 sigma, 1620 +/- 400

GCN CIRCULAR NUMBER: 24185 SUBJECT: LIGO/Virgo S190425z: Fermi GBM Observations

[...]

There was no Fermi-GBM onboard trigger around the event time of the LIGO/Virgo detection of GW trigger S190425z (GCN 24168).

Primary Scientific Goal: Monitoring the electromagnetic counterpart of gravitational waves

Exploit a constellation of satellites

Improve the detection method

Primary scientific goals

Technological requirements

1) Monitoring/prompt triggering the electromagnetic counterpart of gravitational waves		
2) Multimessenger observations with GW and Neutrinos		 Wide FOV Good sensitivity
Progress in understanding mechanism that power jets (like GRBs, AGNs)		Localization capabilityFast response
3) Observation of gamma ray lines from supernovae		
Progress in understanding the mechanism of element formation in extreme environment	J	

4) Searching for magnetars

Understanding possible correlation with FRB

5) TGF, space weather

- Wide FOV in X-rays
- Good sensitivity in X-rays

FROM FERMI-GBM TO CRYSTAL EYE

Beppo-Sax

- Phoswich technique with collimators
- Orientable mechanics
- One module

Fermi-GBM

- Triangulation over 12 pixel (ø 12.7 cm)
- Different orientation
- One module

Crystal Eye

- Charge distribution over 112 pixel (ø ~ 5cm)
- Compact photosensors (simplified phoswich)
- Compact hemispherical design (no need for orientable mechanics)
- 3-4 modules in orbit for a full time coverage

THE CHARGE DISTRIBUTION

The localization is possible by following the charge distribution on the detector

PRELIMINARY SIMULATIONS

Angular resolution ~1deg

Radius: ~20 cm Mass: <50 kg Energy range: 10keV - 30MeV Material: LYSO Photodetectors: SiPM-array FOV: 2π

COMPACT SIZE:

• Free-flyer

- Onboard of space stations
- GBM module of larger satellites

A smart configuration

- Compactness
- Symmetry
- Thermal protection of the SiPMs
- Radioprotection of the SiPMs

THE CRYSTAL EYE METHOD

Effective area and sensitivity (preliminary)

Larger effective area than competitors in the 300keV-10MeV range

THE PIXELS

Array-Sum

Front-end board

+ 4cm +
t 3cm ↓

Properties Mechanical	Units	Value
Density	g/cm ³	7.15
Atomic Number (Effective)		65
Melting Point	°K	2070
Thermal Expansion Coeff.	C ⁻¹	7.0 x 10 ^{−6}
Crystal Structure		Mono
Hardness	Moh	5.8
Hygroscopic		No
Solubility	g/100gH ₂ 0	N/A

THE PROTOTYPE

- 1 LYSO by OST (ground surface)
- 2 LYSO by EPIC Crystals (polished surfaces with ESR)
- 3 BGO by OST (ground surfaces)
- 4 LYSO by EPIC Crystals (ground surfaces)

THE CUSTOM ELECTRONICS

CALIBRATION MODE

FROM CALIBRATION TO OBSERVATION MODE

100 s

CALIBRATION MODE 670748 triggers **OBSERVATION MODE 6281 triggers**

OBSERVATION MODE (Na-22 on OST UP)

Trigger options:

• Majority (>3 quadrants) • AND of the crystals

111

2000 2500

 γ _{1275keV} 5.3%

OBSERVATION MODE (Na-22 on EPIC UP)

UP_OST_HG EPIC_UP_HG Na-22 Na-22 LYSO loon Nameloon a 350_P 300E 300Ē 200 250Ē 200Ē 150Ē 1.1 1.1.1

Trigger options:

- Majority (>3 quadrants)
- AND of the crystals

keV

OBSERVATION MODE (Co-60)

Trigger	options:
00 =	

- Majority (>3 quadrants)
- AND of the crystals

EPIC_UP_HG

UP_ESR_HG

500 1000 1500 2000

DOWN_ESR_HG

0 200 400 600 800 1000 1200 1400 1600 1800 2000

2500

DOWN_ESR_HG Entries 86145

Mean 616.4 Std Dev 385.2

600

500

400F

300

200

100F

1400

1200

1000

800

600

400

200

UP_OST_HG

THE SPACE RIDER FLIGHT

Technological pathfinder for maiden flight of the Space RIDER by ESA in 2024

GOAL:

- Background characterization
- TGF detection
- Technology test

Number of pixels: 3 Material: LYSO Photodetectors: SiPM-array Weight: 1.5kg Power consumption: <6 W

GSGRAN SASSO
SCIENCE INSTITUTESISCHOOL OF ADVANCED STUDIES
Scuola Universitaria Superiore

Nuclear Instruments

12/09/2022

Collaboration today consists of: University of Naples Federico II – INFN-NA Gran Sasso Science Institute (GSSI)

Submitted a PRIN

Looking for collaborations

Applying to various financing calls

...the best Is yet to come...