Observational Constraints on Cosmic-Ray Escape from Ultra-High Energy Accelerators

With Q. Luce (KIT), S. Marafico (IJCLab), J. Biteau (IJCLab), A. Condorelli (IJCLab)

Contribution based on Luce et al. ApJ 936 32 (2022) and Marafico et al. in prep.

Astrophysical picture of Auger data at UHE

[PRL 125 (2020) 121106]

- Hard ejected spectra (quasi mono-elemental fluxes at UHE)
- ◆ Energy cutoff ~5Z EeV
- ♦ Steepening above ~50 EeV: combination of the maximum energy of acceleration of the heaviest nuclei at the sources and the GZK effect
- Steepening above ~10 EeV: interplay between the flux contributions of He and CNO injected at the source with their distinct cutoff energies, shaped by photodisintegration during the propagation
- ✦ Luminosity density $(E^2q_{\text{gen}}(E))$: 6 10⁴⁴ erg Mpc⁻³ yr⁻¹

Ankle feature?

[E. Guido (Auger Collab.), ICRC2021]

Predicted fluxes at Earth

Alternative: Acceleration vs emission spectral index

➡ The role of in-source interactions

- Accelerated particles
 confined in the environment surrounding the source;
- Presence of photon and gas density;
- High energy particles—> escape with no interaction;
- Low energy particles –>
 Pile-up of nucleons at lower energies.

Interactions at the source already discussed in:
Unger, M., Farrar, G. R., & Anchordoqui, L. A. 2015, PhRvD, 92, 123001
Globus, N., Allard, D., & Parizot, E. 2015, PhRvD, 92, 021302
Biehl, D., Boncioli, D., Fedynitch, A., & Winter, W. 2018, A&A, 611, A101
Zhang, B. T., Murase, K., Kimura, S. S. Et al., P. 2018, PhRvD, 97, 083010
Fang, K., & Murase, K. 2018, Nature Phys., 14, 396
Supanitsky, A. D., Cobos, A., & Etchegoyen, A. 2018, PhRvD, 98, 103016
Boncioli, D., Biehl, D., & Winter, W. 2019, ApJ, 872, 110
Condorelli, A., Boncioli, D., Peretti., E., & Petrera, S., *PoS* ICRC2021 (2021) 959

Ingredients of the combined fit

• Model:
$$J(E) = \frac{c}{4\pi} \sum_{A, A'} \iint dz \, dE' \left| \frac{dt}{dz} \right| S(z) q_{A'}(E') \frac{d\eta_{AA'}(E, E', z)}{dE}$$

• Standard combined fit above $10^{18.7}$ eV

< 10^{18.7}eV: protons alone as the low-energy counterpart of in-source interactions
 ++ No need to model the « high-energy Galactic component »

Proton flux

- *Define the Gumbel distribution of a set of four masses (H, He, N, Fe);
- *Including detector effects;
- *Find the best fit fractions with respect to the chosen set of Gumbel distributions;
- *Analysis independent bin to bin.

Proton flux

➡ Proton flux as total flux weighted by proton fraction

The generic model

- Emission of five representative masses: H, He, N, Si and Fe
- Ejected flux for each mass: exponentially-broken power law

$$q_{A_i}(E) = q_{0A_i} \left(\frac{E}{E_0}\right)^{-\gamma_A} f_{\text{supp}}(E, Z_{A_i}), \quad q_p(E) = q_{0p} \left(\frac{E}{E_0}\right)^{-\gamma_p} f_{\text{supp}}(E, Z_p), \quad f_{\text{supp}}(E, Z) = \begin{cases} 1 & \text{if } E \leq E_{\text{max}}^Z, \\ \exp\left(1 - E/E_{\text{max}}^Z\right) & \text{otherwise.} \end{cases}$$

- Ejected flux are propagated using SimProp
- Goodness-of-fit: sum of spectrum and X_{max} deviances
- UHECR luminosity density traced by the density of baryonic matter over cosmic time [Madau & Dickinson 2014], with local overdensity [McCall 2014] Correction factor inferred by Condon et al. 2019:

$$\frac{\delta\rho(r)}{\bar{\rho}} = 1 + \left(\frac{r}{r_0}\right)^{-\alpha},$$

- xGal magnetic fields: $fG < B < nG \sim pG$ here, ie negligible
- EBL: Gilmore, TALYS cross sections, EPOS-LHC & Sibyll2.3

Results

- Emission spectra in $E^{+0.5}$ (nuclei) and $E^{-3.5}$ (protons): extreme values?
- NB: $E^{-3.5}$ (protons) obtained if all protons are ejected ($E_{\text{max}}/2$)
- Results stable against systematics in E, X_{max} , hadronic interaction models, EBL models, redshift evolution of UHECR luminosity

« B-component? » (Hillas)

→B-component as an old event in the Galaxy, similar to UHECR (transient) sources?

• Additional observable to probe transient scenarios of UHECRs: arrival directions

Steady state/Transient state

From transient to steady states

- → Transient scenario
 - UHECRS produced per burst lasting a time 8
 - Source bursting
 - UHECR burst
- → Magnetic field
 - Time spread of the burst induced by the magnetic field

Time delay from magnetic fields

- → Galactic magnetic field (JF12)
 - Strength $B_{G} = 1 \mu G$
 - Coherence length $\lambda_{c} = 0.1$ kpc
 - Size L_{max} = 10 kpc
- → Local Sheet magnetic field
 - Strength B_G = [10; 25] nG (at least few nG, consistent with MHD simulation, considering primordial origin)
 - Coherence length $\lambda_{c} = 10$ kpc
 - Size L_{max} = 1 Mpc
- → Extragalactic magnetic field
 - Strength B_G = 0.1 pG
 - Coherence length $\lambda_{c} = 1 \text{ Mpc}$
 - ♦ Size L_{max} = ∞

Testing the transient scenario for UHECRs

The probability to observe a source is given by a Poisson distribution of parameter:

N=k×Δτ×s_{Gal}

➔ Poisson parameter:

- Δt is the time spread (magnetic field)
- s_{Gal} is the SFR/stellar mass of the galaxy
- k is a new parameter
- $k \times s_{Gal}$ is the burst rate
- $[k] = M_{\odot}^{-1} (SFRD) | [k] = M_{\odot}^{-1} yr^{-1} (SMD)$

The term S_{Gal}

Catalog of 400,000 galaxies: Biteau, ApJS 256 (2021) a near-infrared flux-limited sample to map both stellar mass and star formation rate (SFR) over the full sky

- → Discrete: Compute the flux for each galaxy from the catalogue (~400 000) proportional to their SFR/Stellar mass
- → Continuous: Compute the flux as before, from z=0.08 to z=2.5 (isotropic background)
- → Arrival direction map: Sum the contributions of all galaxies and isotropic background within one pixel
- → Do a smoothing

- <*B*> in Coma from RM: 2 μG over 1 Mpc³ [Bonafede et al., A&A 513 (2010) A30]
- Scaling laws available
- $<\!B\!>$ + interactions in clusters: $t_{escape} > t_{loss}$ possible
- Some clusters may not contribute to the UHECR flux!

Horizon applied to local clusters (GZK sphere)

Random realizations governed by k

$\mathbf{Median}\,(\mathbf{SFR})\,\mathbf{map}-\mathbf{High}\,k$

- → Here, k=10⁻⁴ M_☉⁻¹
- → Median map
- → Council of Giants contributes
- → Nearby galaxies as Andromeda dominate the UHECR sky

$\mathbf{Median}\ (\mathbf{SFR})\ \mathbf{map}\ --\ \mathbf{Small}\ k$

- → Here, k=10⁻⁷ M_☉⁻¹
- → Median map
- → Council of Giants does not contribute !
- → Dominated by far-away clusters/superclusters

$\mathbf{Median}\ (\mathbf{SFR})\ \mathbf{map} - \mathbf{Best}\ k$

- → Here, k=10⁻⁵ M_☉⁻¹
- → Median map
- → Council of Giants contributes
- → No contribution from very close galaxies

The UHE landscape

Constraints on sources

- → SFRD scenario:
 - Core Collapse supernova (CC-SN)
 - CC-SN type lb/c
 - Low luminosity IGRB (LL-IGRB)
 - High luminosity IGRB(HL-IGRB)
- → SMD scenario:
 - Tidal Disruption Event (TDE)
- ➔ Two sources reach the two requirements:
 - LL-IGRB
 - TDE

Summary

• Source environments: key to understand UHECRs

