High Energy Neutrino Astronomy

The Neutrino Connections to Cosmic Ray Origins – Present & Future Shigeru Yoshida

International Center for Hadron Astrophysics, Chiba University

The Global Spectrum of the highenergy cosmic radiations

The (diffuse) cosmic background radiations = the (nearly) isotropic radiations superposed from the numerous sources in the entire sky

- (UHE) Cosmic Rays
- Neutrinos!
 - (power law like) non-thermal spectrum extended from TeV to EeV and beyond

The Cosmic Neutrinos Production Mechanisms

CHIBA

Our data today

PeV

Ee\'

A closer look – TeV-EeV range

ГeV

CHIBA UNIVERSITY

Nature 591 7849 220-224 (2021)

GZK cosmogenic v intensity @ 1EeV in the phase space of the emission history

Shigeru Yoshida : CRIS 2022

IceCube Collaboration Phys.Rev.Lett.**117** 241101(2016) erratum **119** 259902 (2017)

UHECR source is cosmologically LESS evolved

Any sources with evolution compatible or stronger than star formation rate are disfavored

Nature 591 7849 220-224 (2021)

The energy fluxes in the multi-messengers

UHECR ~ Neutrinos! ~ 10^{-8} GeV cm⁻² s⁻¹ sr⁻¹

Why? By accident?

The energetics argument

Waxman & Bahcall (1998), Murase & Fukugita (2019) and more.. per source neutrinos cosmic rays neutrinos cosmic rays $\frac{d\dot{N}_{\nu}}{d\varepsilon_{\nu}} \approx \xi_{\pi} \tau_{p\gamma 0} \frac{1}{x_{\pi} y_{\nu}} \frac{d\dot{N}_{\rm CR}}{d\varepsilon_{\rm CR}} (\varepsilon_{\rm CR} = \frac{\varepsilon_{\nu}}{x_{\pi} y_{\nu}})$ energy flux $\varepsilon_{\nu}^{2} \frac{dN_{\nu}}{d\varepsilon_{\nu}} \approx \xi_{\pi} \tau_{p\gamma 0} x_{\pi} y_{\nu} \varepsilon_{CR}^{2} \frac{dN_{CR}}{d\varepsilon_{CR}} (\varepsilon_{CR} = \frac{\varepsilon_{\nu}}{x_{\pi} y_{\nu}})$ py optical depth charged pion multiplicity $n_0 \varepsilon_{\rm CR}^2 \frac{d\dot{N}_{\rm CR}}{d\varepsilon_{\rm CR}} \approx 6 \times 10^{+43} \left(\frac{E_{\rm CR}^2 \Phi_{\rm CR}}{2 \times 10^{-8} \text{ GeV cm}^{-2} \text{ sec}^{-1} \text{ sr}^{-1}}\right) \left(\frac{ct_{\rm BH}}{2 \text{Gpc}}\right)^{-1} \text{ [erg Mpc}^{-3} \text{ yr}^{-1]}$ cosmic background energy flux source evolution per source $E_{\nu}^{2}\Phi_{\nu}(E_{\nu}) = \frac{c}{4\pi} \int_{0}^{z_{\max}} \frac{dz}{1+z} \left| \frac{dt}{dz} \right| \left[\varepsilon_{\nu}^{2} \frac{d\dot{N}_{\nu}}{d\varepsilon_{\nu}}(\varepsilon_{\nu}) \right] n_{0}\psi(z),$ $\approx \frac{c}{4\pi} t_{\rm H} \left(\frac{1}{t_{\rm H}} \int \frac{dz}{1+z} \left| \frac{dt}{dz} \right| \psi(z) \right) \tau_{p\gamma 0} x_{\pi} \xi_{\pi} y_{\nu} n_0 \varepsilon_{\rm CR}^2 \frac{d\dot{N}_{\rm CR}}{d\varepsilon_{\rm CR}}$ $\approx 4.5 \times 10^{-8} \left(\frac{\xi_z}{3}\right) \left(\frac{\tau_{p\gamma 0} x_{\pi}}{1}\right) \left(\frac{\xi_{\pi} y_{\nu}}{\frac{3}{2}}\right) \left(\frac{E_{\rm CR}^2 \Phi_{\rm CR}}{2 \times 10^{-8} \text{ GeV cm}^{-2} \sec^{-1} \mathrm{sr}^{-1}}\right) \left(\frac{c t_{\rm BH}}{2 \mathrm{Gpc}}\right)^{-1} [\mathrm{GeV cm}^{-2} \mathrm{sec}^{-1} \mathrm{sr}^{-1}].$

The unified source modeling

Yoshida & Murase PRD (2020)

$$L'_{\gamma} \approx L_{\gamma}/\Gamma^2$$
 (co-moving) Luminosity of Photons that collides with protons

power-law index of photon spectrum

$$\tau_{p\gamma}(\varepsilon_p') = \frac{2}{1+\alpha_{\gamma}} \frac{L_{\gamma 0}'}{4\pi R\Gamma c \varepsilon_{\gamma 0}'} \int ds \frac{\sigma_{p\gamma}(s)}{s-m_p^2} \left(\frac{\varepsilon_p'}{\tilde{\varepsilon}_{p0}'(s)}\right)^{\alpha_{\gamma}-1}$$

Optical depth to $p\gamma$ interactions

Specify the optical depth \rightarrow R is determined \rightarrow B-field strength is determined by the equipartition principle

$$U_{\rm B}' = \xi_{\rm B} \frac{L_{\gamma}'}{4\pi R^2 c} = \xi_{\rm B} \frac{L_{\gamma}}{4\pi \Gamma^2 R^2 c},$$

B-field equipartition parameter

$$\frac{B'/\Gamma^2}{\tau_{p\gamma0}\sqrt{\xi_B/L'_\gamma}} = C(\alpha_\gamma, \tilde{\varepsilon}^{\Delta}_{p0})^{-1},$$
 constant

neutrino production optical depth uniquely specifies the B-field

The unified source modeling

Requirements for being **both** UHECR and neutrino emitters

An example of constraints – B -field

The diffuse cosmic background fluxes from the unified sources

boosted source density

$$\mathcal{N}_{\Gamma} \equiv n_0 \xi_{\rm CR} \Gamma^2 = \rho_0 \Delta T \xi_{\rm CR} \Gamma^2.$$

The fluxes from the unified sources

Yoshida & Murase PRD (2020)

The allowed parameter space

 $\xi_{\rm B} < 0.5$ $\tau_{\rm p\gamma} = [0.1, 1]$ Luminosity Density ~ 2 x 10⁴⁵ erg/s

Yoshida & Murase PRD (2020)

The hard spectrum scenario

The hard spectrum scenario

Require ultra-relativistic plasma flow, i.e., $\Gamma >>1$, to be consistent with IceCube EHE limit

Nuclei case : The unified sources emit nuclei

Nuclei must **not** be fully disintegrated – You would have seen only protons, otherwise

Nuclear Survival Condition

(2010)

photodisintegration optical depth

$$\tau_{A\gamma}(\varepsilon_{i}^{\max}) \lesssim A,$$

$$T_{A\gamma}(\varepsilon_{i}^{\max}) \lesssim A,$$

$$T_{\mu\gamma0} \approx \tau_{A\gamma}(\varepsilon_{i}^{\max}) \frac{\int ds \frac{\sigma_{p\gamma}(s)}{s - m_{p}^{2}}}{\int ds \frac{\sigma_{A\gamma}(s)}{s - m_{p}^{2}}} \left[\left(\frac{s_{\text{GDR}} - m_{A}^{2}}{\varepsilon_{i}^{\infty}} \right) \right]^{\alpha_{\gamma}-1}$$

$$Murase \& \text{Beacom (2010)}$$

$$Murase \& \text{Beacom (2010)}$$

$$Murase \& \text{Beacom (2010)}$$

$$Murase \& \text{Beacom (2010)}$$

connections of photodisintegrati to photo-meson production $p\gamma$

$$\sigma_{\gamma 0} \approx \tau_{A\gamma}(\varepsilon_i^{\max}) \frac{\int ds \frac{\sigma_{p\gamma}(s)}{s - m_p^2}}{\int ds \frac{\sigma_{A\gamma}(s)}{s - m_A^2}} \left[\left(\frac{s_{\text{GDR}} - m_A^2}{s_\Delta - m_p^2} \right) \left(\frac{\tilde{\varepsilon}_{p0}^{\Delta}}{\varepsilon_i^{\max}} \right) \right]^{\alpha_{\gamma} - 1}$$

 E_{ν}^2

 $p\gamma$ for the secondary produced protons

power is more limited

photo-meson production on nuclei

Neutrino flux from nuclei

$$\frac{dJ_{\nu}}{dE_{\nu}} \approx \frac{3}{8} \kappa_{p\gamma} \tau_{p\gamma} [E_i/A] \kappa_{\text{dis}} \tau_{A\gamma} E_i^2 \frac{dJ_{\text{CR}}}{dE_i} + \frac{3}{8} \kappa_{\text{mes}} \tau_{\text{mes}} [E_i] (1 - \kappa_{\text{dis}} \tau_{A\gamma}) E_i^2 \frac{dJ_{\text{CR}}}{dE_i}$$

Nuclei case : The unified sources emit nuclei

Nuclei case : The unified sources emit nuclei

The unified model – the parameter space is small

It means the model is testable by future observations!!

 $0.1 < \tau_{p\gamma} < 0.6$ $\xi_{\rm B} < 0.5$

(co-moving) source luminosity $L_{\gamma}' > 2 \times 10^{45} \xi_B^{-1} Z^{-2} \text{ erg/s}$ cosmic ray luminosity density $n_0 L_{\gamma}' \xi_{CR} \Gamma^2 \sim 2 \times 10^{45} \text{ erg/Mpc}^3 \text{ yr}$ $B' < 2.3 \Gamma^2 (L_{\gamma}'/10^{47} \text{ erg/s})^{-1/2} \xi_B^{-1/2} (A/56)^{-0.21} \text{ Gauss}$ (by the nuclear survival condition)

If spectrum harder than $E^{-1.8}$, then $\Gamma > 20$ (relativistic scenario)

The unified scenario : an example

(low luminosity) TDE $p\gamma$

Biel, Boncioli, Lunaridini & Winter Sci. Rep 8, 10828 (2018) High Energy (10TeV-PeV) pp in clusters of galaxies

Fang & Murase Nature Physics 14 196-198 (2018)

How can we find the unified sources?

low luminosity GRBs? Maybe. low luminosity TDEs? Maybe.

Many of them are in fact **OPTICAL TRANSIENTS**

follow up this neutrino alert!

optical/NIR telescopes

KM3NeT

The optical transient sky is too busy

~ 100 SNe are found in z<2 within 1 x 1 deg² sky patch! We can't tell which one out of ~100 SNe is the neutrino source!

These SNe are **background**, but a few of them could be signals

Type 1A – definitely **BACKGROUND**

core-collapse SNe, wind-driven SNe, low-luminosity GRBs

They can be v SOURCES, but may appear as Type lbc or II

A difficult business

We need to filter out SNe but a few of them may be our sources

Demanding v doublet detection

2 v from the same direction within a time of ΔT (~ 30 days)

Example

88% of sources to yield v doublet detection are z < 0.15

\rightarrow Limits the transient counterparts!

A pilot model

 $\kappa = \frac{L_{\nu}}{\int d\varepsilon_{\nu} \left(\frac{\varepsilon_{\nu}}{\varepsilon_{0}}\right)^{-\alpha_{\nu}+1}}.$

Yoshida+ Accepted for ApJ arXiv.2206.13719 (2022)

v source modeling

$$\phi_{\rm PS} \equiv \frac{dN_{\nu}}{dAdtd\varepsilon_{\nu}}$$
$$= \frac{1}{4\pi d_z^2} \frac{\kappa}{\varepsilon_0} \left(\frac{\varepsilon_{\nu}}{\varepsilon_0}\right)^{-\alpha_{\nu}}$$
$$= \frac{1}{4\pi d_z^2} \frac{\kappa}{\varepsilon_0} \left(\frac{E_{\nu}(1+z)}{\varepsilon_0}\right)^{-\alpha_{\nu}}$$

parameters to characterize transient sources

 $\begin{array}{ll} \mbox{flare duration } \Delta T = 30 \ days & \begin{subarray}{c} c.f. \ TDE~\ month \\ CCSNe~\ 10 \ days \\ \hline \end{subarray} \\ \end{subarra$

detector modeling

a la lceCube ~ 1km³ detector

 $\Delta \Omega = 1 \times 1 \text{ deg}^2$ $\Delta T = 30 \text{ days}$

→ atmospheric v background ~ 0.5 event

The parameter space

Self consistency – the sources should not overproduce the cosmic background flux

the isotropic "diffuse" flux measured by IceCube $E^2 \phi_v = 10^{-8} \sim 10^{-7} \text{ GeV/cm}^2 \text{ s sr}$ 10sr)] 10-7 $^{2}\Phi_{v}$ [GeV/(cm²s 10⁻⁸ 10⁻⁹ 님 10-10 10⁵ 10^{6} 10¹⁰ 10^{3} 10^{4} 10^{9} 10¹¹ 10^{7} 10^{8} E [GeV]

The parameter space

Self consistency – the sources should not overproduce the cosmic background flux

the isotropic "diffuse" flux measured by IceCube $E^2 \phi_v = 10^{-8} \sim 10^{-7} \text{ GeV/cm}^2 \text{ s r}$ 10sr)] 10-7 \$ $^{2}\Phi_{v}$ [GeV/(cm² 10⁻⁸ 10^{-9} 님 10-10 10^{6} 10¹⁰ 10^{3} 10^{4} 10⁵ 10^{9} 10¹¹ 10 10^8 E [GeV]

Number of multiplet (doublet) sources

$$N_{\rm PS}^{\rm M} = \frac{\Delta\Omega}{4\pi} \int dV P_{\rm p}^{n=2}(\mu_{\rm PS}) n_0 (1+z)^3 \psi(z).$$

$$\Delta\Omega$$
 = 1 x 1 deg²

 $\Delta T = 30 \text{ days}$

→ annual rate for 2π sky $\frac{2\pi 1yr}{\Delta\Omega\Delta T}N_{PS}^{M} = 2.4 * 10^{5}N_{PS}^{M}$

5-year sensitivity $N_{Ps}^{M} > 10^{-6}$

Number of multiplet (doublet) sources

Demanding more higher (> 100 TeV) doublet to filter out atmospheric v background

$$N_{\rm PS}^{\rm M} = \frac{\Delta\Omega}{4\pi} \int dV P_{\rm p}^{n=2}(\mu_{\rm PS}) n_0 (1+z)^3 \psi(z).$$

False Alarm Rate 0.25/year

5-year sensitivity $N_{PS}^M > 10^{-6}$

<u>Yoshida+ Accepted for ApJ arXiv.2206.13719 (2022)</u> ida : CRIS 2022

Number of multiplet (doublet) sources

Demanding more higher (> 100 TeV) doublet to filter out atmospheric v background

$$N_{\rm PS}^{\rm M} = \frac{\Delta\Omega}{4\pi} \int dV P_{\rm p}^{n=2}(\mu_{\rm PS}) n_0 (1+z)^3 \psi(z).$$

False Alarm Rate 0.25/year

5-year sensitivity $N_{PS}^M > 10^{-6}$

If we found no doublet by ~ 5 year observations source classes with $E_{\nu} > 5 \ x \ 10^{51} \ erg, \ \rho_{\nu} < 2 \ x 10^{-8} \ Mpc^{-3} \ yr^{-1}$ are rejected

Super Luminous SNe and jetted TDEs are not the unified sources

<u>Yoshida+ Accepted for ApJ arXiv.2206.13719 (2022)</u> ida : CRIS 2022

If ν multiplet is detected, look for the optical counterpart

Identify the ν source

Test the hypothesis that the closest transient object is the v doublet source

Focus on nearby (z<0.15) transients

88 % of the sources to yield v multiplet are z<0.15

Must be as bright as 23 magnitude → 4m class telescope

Optical Follow-ups

Shigeru Yoshida : CRIS 2022

How many SNe < 23 magnitude are found in the redshift space?

Requiring as bright as 23 magnitude already filters out many distant SNe Yet N for $\Delta \Omega = 1 \times 1 \text{ deg}^2$ Type Ia ~1.5 / $\Delta \Omega$ Type II ~1.3 / $\Delta \Omega$ Type Ibc ~1.1 / $\Delta \Omega$ ~4 SNe are always found in your FOV

Which one out of 4 SNe is v source?

- Look at their redshift. Must be small
 e.g. if find it at z= 0.04, 2.7 σ detection against the bg
- 2. photometric observations to measure light curve

determine t_0

The in-ice Cherenkov detector

D-Egg

mDOM

Shigeru Yoshida : CRIS 2022

The next generation Cherenkov detector modules **D-Egg** developed and fabricated in Japan

278 pcs will be deployed in 2025/26

The DOM for the present IceCube

The D-Egg principle

optical sensors housed in an ellipsoid glass to reduce the hole diameter

diameter 30 cm \rightarrow 5 cm reduction from the IceCube DOM to save 15% in drill time and fuel consumption two high-QE pmts enclosed in the vessel \rightarrow A larger photon detection area (see the next slides)

The vessel : Challenging the ellipsoid shape

Thicker (20 mm thickness) at the equator for mechanical strength

Thinner (10 mm thickness) at the top and bottom surface for being UV photon transparent

<u>Optimize the glass ion content</u> (reduction of Fe_2O_3) to enhance transmittance at $\lambda < 350$ nm

pressure test up to 70 MPa in a hyperbaric chamber

UNIVERSITY

The production dry run built 320 pcs (2019-2021)

assemble, assemble, and assemble (and fight against the covid outbreak)

FAT – Final Acceptance Test

The bug freezer to house 16 eggs

Test

- Main board boot ullet
- Data communication \bullet

Measure

- PMT Gain \bullet
- Charge resolution \bullet
- Transit time \bullet
- Linearity \bullet
- Dark rate \bullet
- Pulse feature extraction \bullet

at the various temperatures from 20C to -40C

D-Eggs waiting for being tested

Shigeru Yoshida : CRIS 2022

The improved photon detection efficiency

The PMT 2D detection efficiency distribution

8' Hamamatsu R5912

implemented them into the detector MC

The effective detection area comparisons

SPE pulse and Dark rate

Take-away Messages

- The UHECR Neutrino Unified Model requires the narrow parameter space regarding the sources, their distributions and their evolutions, which is testable by the future observations
- Demanding the 100TeV neutrino multiplet with optical followup observations is a powerful approach to identify the unified sources
- The next generation in-ice Cherenkov optical sensors have been established, making a cost-efficient photon detector array technically feasible.
 Get ready for IceCube Upgrade in 2025