

The HERD space mission

Leandro Silveri On behalf of the HERD collaboration

Gran Sasso Science Institute (GSSI) and INFN, L'Aquila, Italy

- The HERD Space mission
- HERD and its subdetectors: preliminary design
- Science outlooks
- Summary

HERD Space Mission

- ulletand China
- ${\bullet}$ Space Station
- Planned launch in 2027 ullet
- Scientific goals:

 - Electron energy spectrum up to 10 TeV

 - Indirect dark matter searches

Joint collaboration between Italy, Spain, Switzerland

Particle detector to be installed onboard the Chinese

Direct measurement of Cosmic Ray energy spectrum up to the *knee* region (PeV scale) Gamma monitor and full sky survey up to 100 TeV

G S

S

INF

CALET	AMS-02	Fermi LAT
2	3	10
0.2	0.3	0.1
10 ⁵	10 ⁵ - 10 ⁶	10 ³
27	17	8.6
0.12	0.09	1

Preliminary Design

G S S I

ullet

The use of **5 sensitive faces** increases significantly the detector acceptance without dramatically affecting the size

- **SCD** -> charge measurement
- **PSD** -> photon anticoincidence and charge measurement
 - -> tracking system
- **TRD** -> calibration of response for TeV protons

CALO -> energy measurement and shower imaging (LYSO cubes)

Silicon Charge Detector (SCD)

Silicon microstrip detector for precise charge measurement

- Z resolution < 0.1 c.u. @ Z = 1ullet
- Z resolution < 0.2 c.u. @ Z = 6
- Z minimum range 1 26

6

G S S Plastic Scintillator Detector (PSD)

4 layers of PS bars readout by SiPMs, used for y anticoincidence and charge measurements

- Veto efficiency > 99.5% (+/- 90°)
- Z resolution < 0.2 c.u @ Z=2, < 0.3 c.u @ Z=6•
- Veto delay < 150 ns •

Trapezoidal bar shape helps increasing the hermeticity of the PSD layer

7

Flber Tracker (FIT)

Track reconstruction of the impinging particles by using scintillating fibers readout by SiPMs

- Angular resolution < 0.6° @ 1GeV, 0° inc. angle
- Coverage ratio > 80%
- Z resolution < 0.3 c.u. @Z=2 •

Picture of the FIT prototype

Position Residuals from proton beam tests

Dual readout (IsCMOS and PD) to increase the range, crosscalibrate and reduce the systematics

CRIS 2022 – L. Silveri

After 5 years of data taking:

G S

S

INFN

- **Direct observation** of protons and helium at the knee of their spectra •
- **Increased statistics** in the overall energy range of previous experiments •

Outlooks on y astronomy

Using its very large FoV and Energy coverage, HERD can produce alerts for MultiMessenger astronomy, and study transient phenomena, also combining data with CTA and LHAASO

Differential sensitivity to

G S

Summary

- The goals and the performances that can be reached by the HERD Space Mission
- How the preliminary design of the HERD subdetectors modules look like
- Some outlooks on the science that can be made with HERD
- We are working on the detector optimization using data from simulations, test beam and cosmic-ray muons

