KM3NeT/ARCA Expectations for Starburst Galaxies Observation

Antonio Ambrosone

In collaboration with W. I. Ibnsalih, A. Marinelli, G. Miele, P. Migliozzi and M. R. Musone

on Behalf of the <u>KM3NeT Collaboration</u>

12^{th} Cosmic Ray International Seminar, Naples, September 12-16 2022

antonio.ambrosone@unina.it

Multi-Messenger Puzzle

Astrophysical environments: factories of high-energy messengers such as Cosmic rays, Gamma-rays, neutrinos and Gravitational waves

• Which sources power the Astrophysical Messengers fluxes?

The energy budget for the messengers is the same. This suggests a common origin

Neutrinos: possible key messengers to solve the origin puzzle

Antonio Ambrosone | University of Naples "Federico II"

M. Ahlers, F. Halzen / Progress in Particle and Nuclear Physics 102 (2018) 73–88. https://doi.org/10.1016/j.ppnp.2018.05.001

The KM3NeT Detector

The KM3NeT detector (under construction): ARCA (Astroparticle Research with Cosmics in the Abyss) and ORCA (Oscillation Research with Cosmics in the Abyss). doi: 10.1088/0954-3899/43/8/084001

<u>ARCA</u>: Study of the high-energy astrophysical Neutrinos

ORCA: Study of Neutrino Physics

https://www.km3net.org/

Already Operative! 19 Operative DUs for ARCA and 9 for ORCA

Antonio Ambrosone | University of Naples "Federico II"

Track-like event

Shower-like Event

3

Starburst Galaxies as Neutrino Factories

Point-Source

PRL 124 (2020) IceCube (arxiv: 1910.08488)

Is the 2.9σ excess (over the background hypothesis) a tracer of the SBG activity?

Which is the expectations for KM3NeT/ARCA about this source class?

Antonio Ambrosone | University of Naples "Federico II"

Intense Star-forming activity

Diffuse Emission

Ambrosone et al. MNRAS 503 (arxiv:2011.02483)

SBGs might explain a part of ICeCube's measurements

Analysis Method

- Goal: Evaluate the possibility for KM3NeT/ARCA115 to constrain SBG fluxes
 - → Analysis with a possible diffuse SBG flux
 - Studying the most promising SBG point-like sources
- Calculated the sensitivity at 90 % C.L. and comparison with SBGs SED Method:
 - Cut&Count approach
 - -> Frequentist statistic (using the Feldman&Cousins upper limit calculation)
 - Monte Carlo simulation of KM3NeT/ARCA115

Sensitivity definition:

(Phys. Rev. D, 57:3873–3889, 1998)

average upper limit

Antonio Ambrosone | University of Naples "Federico II"

Diffuse Analysis

Considered the energy range [100 GeV - 10 PeV]

- Background: μ atmospheric, ν atmospheric ($\nu_{\mu}, \nu_{e}, \nu_{\tau}$)
- Signal: ν diffuse SBG $(\nu_{\mu}, \nu_{e}, \nu_{\tau})$

Antonio Ambrosone | University of Naples "Federico II"

Model developed by Ambrosone et al. MNRAS 503 (arxiv:2011.02483)

Selection \rightarrow Up-going Track Events ($\theta < 100^{\circ}$)

Diffuse Analysis: Tracks Selection

Selection chain:

Up-going cut ($\theta < 100^{\circ}$)

Selection on quality reconstruction variables

- Long-track events (Len > 300 m)
- Selection using a multivariate with machine learning (Boost decision tree, BDT)

Antonio Ambrosone | University of Naples "Federico II"

Optimized for good track up-going

Events for 1 BB/1 yr (all energy range)					
Selection	Atmospheric muons	Atmospheric neutrinos	Signal diff		
Triggered events	39389987.	79139.1	1200		
Up-going	263816.2	58395.9	715		
Quality cut + BDT selection	389	42400.3	345		

Diffuse Analysis: Cascades Selection

- **Selection chain:** Contaminent events (R_{det} < 600, Z_{det} < 650)
 - Short length events (Len<300 meters)
 - Selection on quality reconstruction variables
 - Selection with a BDT trained and optimizeted for cascade events

Antonio Ambrosone | University of Naples "Federico II"

Selection	Atmospheric muons	Atmospheric neutrinos	Signal
Containment events	29303243.	31779.3	
Track length	2520488.4	15918.8	ŝ
Quality cut	389871.1	4394.5	
BDT cascade	103.9	898.7	

Diffuse Analysis: RESULT

COMBINED TRACK-LIKE AND CASCADE-LIKE EVENTS

The sensitivity is compared with two different SBG scenarios: on the left the expected signal was calculated from HESE (IceCube) and Fermi-LAT EGB, on the right using CASCADE (IceCube) and Fermi-LAT EGB.

Antonio Ambrosone | University of Naples "Federico II"

<u>ARCA</u> is extremely sensitive for such a spectrum and in few years of data taking it will put sever constraints on such a scenario

KM3NeT/ARCA115 expectations for nearby known SBG sources

Antonio Ambrosone | University of Naples "Federico II"

KM3NeT/ARCA115 expectations for nearby known SBG sources The SMC core $(\sim 0.4^{\circ})$ can be constrained. The extension of the nucleus causes only 22% about degradation of the sensitivity

Antonio Ambrosone | University of Naples "Federico II"

KM3NeT/ARCA115 expectations for nearby known SBG sources

Circinus is compatible with the sensitivity within its 1σ most credible interval, even though its best-fit scenario seems to be not optimistic

Antonio Ambrosone | University of Naples "Federico II"

Antonio Ambrosone | University of Naples "Federico II"

Diving into the Sources: Event Selection

- - Only $\nu_{\mu} \bar{\nu_{\mu}} CC$
 - Dedicated Simulation for each Source
 - \rightarrow

Event Selection:

• Signal: Neutrinos coming from the Rol, defined by α

Antonio Ambrosone | University of Naples "Federico II"

Method: Cut&Count approach and Frequentist Statistic (Feldman & Cousins Upper limit Calculation)

Model Rejection Factor minimization to optimize the sensitivity

Diving into the Sources: Event Selection

Only $\nu_{\mu} - \bar{\nu_{\mu}} CC$ Dedicated Simulation for each Source

Model Rejection Factor minimization to optimize the sensitivity

Event Selection:

- Signal: Neutrinos coming from the Rol, defined by α
- **Background:** All the declination band, rescaled for the dimension of the Rol

$$\Omega_{RoI}/\Omega_{db} \simeq \pi \alpha^2/(2\pi 2\alpha) = \alpha/4$$

Region of Interest

Antonio Ambrosone | University of Naples "Federico II"

Method: Cut&Count approach and Frequentist Statistic (Feldman & Cousins Upper limit Calculation)

Diving into the Sources: Small Magellanic Cloud (SMC)

$$\Phi_{\nu} \propto \left(\frac{E}{\text{GeV}}\right)^{-2.1} \times e^{-\frac{E}{500 \text{ TeV}}}$$

Best-fit Spectral Energy Distribution (SED) scenario

Sensitivity compared with theoretical expectations

The sensitivity is shown in the energy range where 90% of the signal is concentrated

Antonio Ambrosone | University of Naples "Federico II"

SMC simulated as an extended source of 0.5°

16

Diving into the Sources: CIRCINUS

Circinus is simulated as a point-like source

$$\Phi_{\nu} \propto \left(\frac{E}{\text{GeV}}\right)^{-2.3} \times e^{-\frac{E}{500 \text{ TeV}}}$$

Best-fit Spectral Energy Distribution (SED) scenario

The sensitivity is shown in the energy range where 90% of the signal is concentrated

Antonio Ambrosone | University of Naples "Federico II"

For ARCA, It will be challenging to constrain the best-fit scenario. Probably, it will be possible to constrain the upper-limit of such a scenario.

Diving into the Sources: NGC 1068

NGC 1068 is simulated as a point-like source

$$\Phi_{\nu} \propto \left(\frac{E}{\text{GeV}}\right)^{-3.2}$$

Best-fit (Spectral Energy Distribution) SED scenario inferred by IceCube

The sensitivity is shown in the energy range where 90% of the signal is concentrated

Antonio Ambrosone | University of Naples "Federico II"

In a single year of data taking, ARCA can constrain the inferred scenario by the IceCube collaboration

DIFFUSE:

The future measurements in the range of 10-100 TeV will be crucial to better understand the physics of "Cosmic Reservoirs"

POINT-LIKE:

- The SBG activity of Circinus will be more challenging to constrain
- AGN activity

Antonio Ambrosone | University of Naples "Federico II"

KM3NeT/ARCA is a fundamental tool to unveil the Origin of the High-energy Neutrino Flux

the detector will be able to strongly constrain the considered hadronic scenario

 \bullet In 7 years of data taking, ARCA will be able to test the potential hadronic emission coming from the core of SMC

In less than 1 year, it will be able to constrain the scenario inferred by IceCube for NGC 1068. Even though this does not constrain SBG activity, it will strongly affect its

