

Supernova's neutrino detection at the **Jiangmen Underground Neutrino Observatory** Naples, Italy, September 12 -16, 2022

Università

di Catania

di Fisica

C. Lombardo^{a,b} on behalf of the JUNO Collaboration

^a University of Catania

^b INFN-Catania

Jiangmen Underground Neutrino Observatory

- JUNO is a medium baseline (53 km) reactor neutrino experiment, located in China and 650 m overburden.
- JUNO measures the neutrino flux from 8 reactor cores dispatched in two nuclear power plants (combined thermal power of 26.6 GW).
- In addition to the main detector JUNO will also have a second detector called JUNO-TAO placed near one of the reactor cores.
- JUNO is also sensitive to other neutrino sources.

JUNO:Central Detector

- 20 kt of liquid scintillator based on LAB inside a 35.4 m acrylic vessel
- Surrounded by a water Cherenkov tank and a top muon tracker as veto
- 17612 20-inch PMTs + 25600 3-inch PMTs for dual calorimetry
- Primary goals: precise measurement of reactor neutrino oscillation parameters and Neutrino Mass Ordering (NMO) determination

Requirements:

- High statistics ($\sim 10^5$ events in 6 yr)
- Energy resolution: ~3%@1MeV
- Energy scale uncertainty < 1%

arXiv:2104.02565

JUNO: Calibration

Crucial to understand detector response non-uniformity and achieve: <1% energy scale uncertainty + 3% at 1MeV energy resolution

Four complementary sub-systems: 1D, 2D and 3D scan with multiple calibration sources

Cable system finished prototype test

Angel, Abusleme, et al. "Calibration strategy of the JUNO experiment." *Journal of High Energy Physics* 2021.3 (2021).

C. Lombardo CRIS2022

JUNO:TAO detector

- 2.8 ton of Liquid Scintillator doped with Gadolinium (GdLS) in a spherical vessel with 1.8 m diameter
- Expected 4000 IBD/Day (2000 with 1-ton fiducial volume)
- $\sim 10 \ m^2$ of SiPMs (more than 4000 4 x 8 SiPMs arrays)
- Operate at -50 °C to reduce SiPM dark noise
- From the center to the outside: GdLS → Acrilic vessel → SiPMs and support → LAB Buffer → Criogenic system → water and HDPE shield → muon veto
- High energy resolution : $\sim 1.5\%@1$ MeV
- Prototype under construction in China

JUNO: Neutrino Detection

(Anti-)neutrinos are observed by:

Inverse Beta Decay (IBD) via the positron signal (1) and the following neutron capture (2):

Elastic scattering (ES) on e⁻, CC and NC interactions:

Lombardo CRIS2022

Current Status: Central Detector

Inner diameter: 35.40 ± 0.04 m Thickness: 124 ± 4 mm Light transparency > 96% @ LS Radiopurity: U/Th/K < 1 ppt

Acrylic sphere (LS container)

Supported by Stainless Steel (SS) Structure:

Installation completed

- All pieces ready on site
- Installation just started

C. Lombardo CRIS2022

Current Status: Liquid Scintillator

Four purification plants to achieve target radio-purity 10⁻¹⁷ g/g U/Th and 20 m attenuation length at 430 nm.

LS mixing + purification systems are almost ready →will start commissioning after summer C. Lombardo CRIS2022

Current Status: Electronics + PMT

Synergetic 20-inch and 3-inch PMT systems to ensure energy resolution and charge linearity

Photon Detection Efficiency

ALL:Mean=29.6%, STD=2.6%

NNVT:Mean=30.1%, STD=2.8%

1000

Electronics:

All PMTs produced, tested*, and instrumented with waterproof potting
Assembly finished and connections being tested → Installation in October

C. Lombardo CRIS2022

* arXiv:2205.08629

Current Status: Veto detector

Water pool:

- 35 kton of ultrapure water cherenkov detector
- Will act as passive shield and veto for cosmic muons (> 99.5% efficiency, 2400 20' PMTs)

- Water pool liner construction finished
- Water pipes and extraction system: installations done → will provide clean water underground soon

Top tracker:

- Built from OPERA's tracker layers
- Goal: study and veto cosmogenic backgrounds
 and atmospheric muons

- Prototype working
- Modules already at JUNO site
- Mechanical structure design done
- Electronic design done
- → To be produced and tested this year

Physics@JUNO

Physics@JUNO

- Reactor Neutrino Oscillations
 - Sub-percent precision measurement of the oscillation parameters (arXiv: 2204.13249 accepted by Chin. Phys. C)
 - Determination of the neutrino mass ordering
- Solar Neutrinos
 - Sensitivity of ⁷Be, ⁸B, pep, and CNO neutrinos (Chin. Phys. *C* **45** 023004)
- Diffused SuperNova Background (arXiv:2205.08830)
- Atmospheric Neutrinos
 - independent measurements and systematics to boost NMO sensitivity
 - Flux measurements (EPJ-C 81 (2021))
- Geoneutrinos
 - $\bar{\nu}_e$ from ²³⁸U and ²³²Th decay chains in Earth (Chin. Phys. C 40 (2016).)

- If there is a Galactic CCSN, JUNO will be able to detect the CCSN flux with high statistics
- High signal rate \rightarrow almost background free observation
- Possibility to detect Pre-SN neutrinos for close-by sources (~< 1kpc)

- If there is a Galactic CCSN, JUNO will be able to detect the CCSN flux with high statistics
- The multi-channel detection of CCSN enables JUNO to get spectra of all neutrino flavours
- Dominant detection channels: IBD, v-p ES, and v-e ES

Channel	Туре	Events for different $\langle E_{\nu} \rangle$ values		
		12 MeV	14 MeV	16 MeV
$\overline{\nu_{\rm e}} + p \rightarrow e^+ + n$	CC	4.3×10^{3}	5.0×10^{3}	5.7×10^{3}
$\nu + p \rightarrow \nu + p$	NC	0.6×10^3	1.2×10^{3}	2.0×10^{3}
$\nu + e \rightarrow \nu + e$	ES	3.6×10^{2}	3.6×10^{2}	3.6×10^{2}
$\nu + {}^{12}\mathrm{C} \rightarrow \nu + {}^{12}\mathrm{C}^*$	NC	1.7×10^{2}	3.2×10^{2}	5.2×10^{2}
$ u_{\rm e} + {}^{12}{\rm C} \rightarrow e^- + {}^{12}{\rm N}$	CC	0.5×10^{2}	0.9×10^2	1.6×10^{2}
$\overline{\nu}_{\mathrm{e}} + {}^{12}\mathrm{C} ightarrow e^+ + {}^{12}\mathrm{B}$	CC	0.6×10^{2}	1.1×10^{2}	1.6×10^2

Fengpeng An et al 2016 J. Phys. G: Nucl. Part. Phys. 43 030401

Visible energy distribution in JUNO of a typical SN at 10 kpc

Good energy and time resolution + flavor classification allow JUNO to measure:

Can JUNO detect SASI (Standing Accretion Shock Instability)?

Fast time variations of the detected rates, oscillating with a characteristic frequency \rightarrow Spectral Analysis of the neutrino data

Observed Light Curve \rightarrow Fourier Transform \rightarrow Power Spectrum

Two strategies to trigger a transient event:

- Prompt Real-time Monitor:
 - Higher energy threshold (~1MeV)
 - Increase sensitivity horizon
- Multi-messenger (MM) trigger:
 - Lower energy threshold (~20 keV)
 - Increase signal statistics

Real-time monitoring based on:

- Sliding window: compare number of candidates in time window with a pre-defined threshold
- Bayesian blocks algorithm: divide the timeline into blocks with candidates uniformly distributed to search for event rate change

If transient astrophysical signal triggered:

 \rightarrow All (triggerless) data are stored to increase the physical data obtained

- \rightarrow JUNO as a powerful neutrino telescope for transient MM observations
- \rightarrow Major role in the next-generation Supernova Early Warning System (SNEWS 2.0)

Diffused Neutrino Supernova Background@JUNO

Diffused Supernova Neutrino Background (DSNB) = superposition of neutrino signals from all past supernova explosions, yet to be observed

- Discovery of DSNB signal will provide important information on astrophysics and cosmology
- Detection in JUNO via IBD, with main background from NC atmospheric neutrinos → few events/year
- Selection: [12-30] MeV + fiducial volume + PSD (pulse shape discrimination, signal vs background)

Conclusions

- JUNO is a powerful observatory for neutrinos coming from different sources
- JUNO has different physics goals: NMO, oscill. parameters, solar neutrinos, geoneutrino
- It will play an important role in Multi-messenger Astrophysics, with different possible measurements:
 - CCSN all flavour lightcurves;
 - CCSN direction;
 - CCSN flavor-dependent spectrum;
 - Diffused SN background.

C. Lombardo CRIS2022

Thanks for your attention!

Back up

Reactor Neutrino Oscillations

Determination of the neutrino mass ordering

Sub-percent precision measurement of the oscillation parameters (arXiv: 2204.13249)

- Profit from spectrum precise measurement to extract oscillation parameters with <1% precision
- Probe simultaneously $\Delta m^2_{~21}$ and $\Delta m^2_{~32}/\Delta m^2_{~31}$ driven oscillations

Atmospheric Neutrinos

 \rightarrow Neutrino oscillations and NMO can also be assessed using atmospheric neutrinos

Why atmospheric neutrinos?

- Complementary detection channels:
 independent measurements and systematics
- Boost of NMO sensitivity using both channels:
- \rightarrow NMO determination at 3 σ faster!
- Exploit matter effects on oscillations
- Additional parameters: $\sin^2\theta_{23}$ and δ_{CP}

Ongoing analysis!

 \rightarrow Flavor - dependent energy spectrum can be measured in the (0.1 - 10) GeV energy range $\rightarrow v_e^{}/v_\mu^{}$ discrimination based on time pattern of scintillation light possible

 \rightarrow Promising potential for GeV neutrino physics

Results published in Eur. Phys. J. C (2021) 81:887

Solar Neutrinos

- Main detection channel $\rightarrow v_e$ elastic scattering (ES)
- JUNO can benefit of its enormous statistics
- Different fluxes could be detected:
 - ⁷Be
 - ⁸B
 - Pep
 - CNO

Solar Neutrinos

- In particular, High energy (⁸B neutrinos):
 - Possibility to use CC and NC interactions on ¹³C
 - Unprecedented detection threshold at 2 MeV
 - More precision: contribute to solve metallicity puzzle
 - Spectral shape: study day/night asymmetry

