

RESULTS FROM THE TELESCOPE ARRAY

12th Cosmic Ray International Seminar Naples, Italy, September 12-16, 2022

John Matthews University of Utah Telescope Array Collaboration

14 September 2022

TELESCOPE ARRAY COLLABORATION

R.U. Abbasi^{1,2}, M. Abe³, T. Abu-Zayyad^{1,2}, M. Allen², Y. Arai⁴, R. Arimura⁴, E. Barcikowski², J.W. Belz², D.R. Bergman², S.A. Blake², I. Buckland², R. Cady², B.G. Cheon⁵, J. Chiba⁶, M. Chikawa⁷, T. Fujil⁸, K. Fujisue⁷, K. Fujista⁴, R. Fujiwara⁴, M. Fukushima⁷, R. Fukushima⁴, G. Furlich², R. Gonzalez², W. Hanlon², M. Hayashi⁹, N. Hayashida¹⁰, K. Hibino¹⁰, R. Higuchi⁷, K. Honda¹¹, D. Ikeda¹⁰, T. Inadomi¹², N. Inoue³, T. Ishii¹¹, H. Ito¹³, D. Ivanov², H. Iwakura¹², A. Iwasaki⁴, H.M. Jeong¹⁴, S. Jeong¹⁴, C.C.H. Jui², K. Kadota¹⁵, F. Kakimoto¹⁰, O. Kalashev¹⁶, K. Kasahara¹⁷, S. Kasami¹⁸, H. Kawai¹⁹, S. Kawakami⁴, S. Kawana³, K. Kawata⁷, I. Kharuk¹⁶, E. Kido¹³, H.B. Kim⁵, J.H. Kim², J.H. Kim², M.H. Kim¹⁴, S.W. Kim¹⁴, Y. Kimura⁴, S. Kishigami⁴, Y. Kubota¹², S. Kurisu¹², V. Kuzmin¹⁶, M. Kuznetsov^{16,20}, Y.J. Kwon²¹, K.H. Lee¹⁴, B. Lubsandorzhiev¹⁶, J.P. Lundquist^{2,22}, K. Machida¹¹, H. Matsumiya⁴, T. Matsuyama⁴, J.N. Matthews², R. Mayta⁴, M. Minamino⁴, K. Mukai¹¹, I. Myers², S. Nagataki¹³, K. Nakai⁴,
R. Nakamura¹², T. Nakamura²³, T. Nakamura¹², Y. Nakamura¹², A. Nakazawa¹², T. Nonaka⁷, H. Oda⁴, S. Ogio^{4,24}, M. Ohnishi⁷, H. Ohoka⁷, Y. Oku¹⁸, T. Okuda²⁵, Y. Omura⁴, M. Ono¹³, R. Onogi⁴, A. Oshima⁴, S. Ozawa²⁶, I.H. Park¹⁴, M. Potts², M.S. Pshirkov^{16,27}, J. Remington², D.C. Rodriguez², Y. Shibasaki¹², F. Shibata¹¹, N. Shibata¹⁸, Y. Saito¹², N. Sakaki⁷, T. Sako⁷, N. Sakura⁴, K. Sano¹², K. Sato⁴, T. Seki²⁹, M. Saho², T. Sokolsky², N. Sone¹², B.T. Stokes², T.A. Stroman², T. Suzawa³, Y. Takagi⁴, Y. Takahashi⁴, M. Takamura⁶, M. Takada⁷, R. Taketa²⁹, M. Takita⁷, Y. Tameda¹⁸, H. Tanaka⁴, K. Tanaka⁴, K. Tanaka⁴, Y. Tanoue⁴, S.B. Thomas², G.B. Thomso², P. Tinyakov^{16,20}, J. Tkachev¹⁶, H. Tokuno³², T. Tomida¹², S. Troitsky¹⁶, R. Tsuda⁴, Y. Tsunesada^{4,24},

¹ Loyola University Chicago ² University of Utah ³ Saitama University ⁴ Osaka City University ⁵ Hanyang University ⁶ Tokyo University of Science ⁷ University of Tokyo (ICRR) ⁸ Kyoto University ⁹ Shinshu University ¹⁰ Kanagawa University ¹¹ University of Yamanashi ¹² Shinshu University (Inst. of Engineering) ¹³ RIKEN ¹⁴ Sungkyunkwan University ¹⁵ Tokyo City University ¹⁶ Institute for Nuclear Research of the Russian Academy of Sciences ¹⁷ Shibaura Institute of Technology ¹⁸ Osaka Electro-Communication University ¹⁹ Chiba University ²⁰ Université Libre de Bruxelles ²¹ Yonsei University ²² University of Nova Gorica ²³ Kochi University ²⁴ Osaka City University (Nambu Yoichiro Institute) ²⁵ Ritsumeikan University ²⁶ National Inst. for Information and Communications Technology, Tokyo ²⁷ Lomonosov Moscow State University ²⁸ Ulsan National Institute of Science and Technology ²⁹ University of Tokyo (Earthquake Inst.) ³⁰ Hiroshima City University ³¹ KEK ³² Tokyo Institute of Technology ³³ National Instit. for Quantum and Radiological Science and Technology ³⁴ CEICO, Institute of Physics, Czech Academy of Sciences ³⁵ Ewha Womans University

TELESCOPE ARRAY: THE LARGEST COSMIC RAY OBSERVATORY IN THE NORTHERN HEMISPHERE

TELESCOPE ARRAY

Telescope Array Detectors

Surface Detector Array (3/2008)

- 507 Scintillator Counters
- 1.2 km spacing
- 3 m² area
- ~700 km²

Fluorescence Telescopes (2007)

- 3 Stations
- 12–14 Telescopes
- 3°–31° elevation
- Cover SD Array

Scintillator Detector

CRIS 2022

TELESCOPE ARRAY

TA Low Energy (TALE)

Fluorescence Telescopes

- 10 new telescopes
- 31°–59° elevation
- With main TA 14: 3°–59°
- Since 9/2013

Scintillator infill array

- 400 & 600-m spacing
- Same SD design as TA
- Since 3/2018

TELESCOPE ARRAY

TA x 4 Expanded Surface Array

- 2.08-km spacing
- SDs similar design as TA
- 257 of planned 500 deployed (operational since 11/2019)

Fluorescence Telescopes

- 4 telescopes viewing NE lobe (since 06/2019)
- 8 telescopes viewing SE lobe (since 08/2020)
- 3°–17° elevation

CRIS 2022

TELESCOPES

8

- Segmented mirrors
- 256 hexagonal PMTs/camera
- 1 pixel views ~1° of sky
- UV band-pass filter 14 September 2022

EVENT RECONSTRUCTION

- In fluorescence we see the shower sweep across the mirror
- Reconstruct Shower-Detector
 Plane
- Fit time-vs-angle to get geometry (For hybrid add in SD times giving much more lever arm for fit)
- Reconstruct size of shower vs depth

SCINTILLATOR SURFACE DETECTORS

- 2 layers scintillator •
- 1.25 cm thick, $3m^2$ area •
- Optical fibers to PMTs •

EVENT RECONSTRUCTION

- Use counter location and timing to locate shower core and direction
- Fit counter signal size to find lateral distribution
- S800: Signal size at 800 m is the energy indicator
- Scaled to the calorimetric energy/FD, E/1.27

EVENT RECONSTRUCTION

- Use counter location and timing to locate shower core and direction
- Fit counter signal size to find lateral distribution
- Signal size at 800 m, S800, is the energy indicator
- Use S800 and zenith angle to look up energy (from CORSIKAproduced table)
- Hybrid fluorescence provides energy scale: $E_{\text{final}} = E_{\text{TBL}}/1.27$

1.5

-0.5 0 0.5

In [E(TA Hybrid) / E(TA SD)]

TAX4 HYBRID EXAMPLE EVENT

Hybrid Analysis

- Fluorescence Telescope event •
- Surface detector event ٠
- Time-matched within 1 ms ٠
- Accurate event geometry •
 - SDP-ground intersection
 - Time vs Angle fit with long • lever arm

25

20

15

10

- TA Energy Spectrum
- TAx4 1-year spectrum superimposed
- Auger data (south) appears to drop off ~10^{19.6} eV, Telescope Array (north) sees a higher energy 10^{19.8} eV
- 1-year of (half of) the TAx4 expansion, data looks like it supports the higher GZK threshold in north

Declination dependence in the TA SD spectrum

- Difference of the cutoff energies of energy spectra
 - log(E/eV) = **19.64** ± **0.04** for lower dec. band (-16°–24.8°) [™]
 - log(E/eV) = 19.84 ± 0.02 for higher dec. band (24.8°–90°)
- The global significance of the difference is estimated to be
 4.30
- Or an Energy Dependent correction (10%/decade E)

Combine TA SD spectrum (11 years) with TALE FD monocular (22 months) to get CR spectrum covering 5 ordersof-magnitude

- Knee: $\log_{10}(E/eV) \approx 15.5$
- LE ankle: log₁₀(*E*/eV) = 16.22(2)
- 2nd Knee: log₁₀(*E*/eV) = 17.04(4)
- Ankle: $\log_{10}(E/eV) = 18.69(1)$
- Cutoff: $\log_{10}(E/eV) = 19.81(3)$

Peter's Cycle?: $10^{15.6} - 10^{17.1} \text{ eV}$

New Highest Event Detected by TA

21

2021/05/27 10:35:56.47, No FD observation

NEW HIGHEST EVENT DETECTED BY TA

SD event->Date:20210527 Time:103556.474337

- SD UP11 _____ SD L0110 _____ SD_UP217 SD L021

> SD UP310 SD L031

> > SD_UP31

ADC count

DIRECTION IN THE SKY-MAP

CHEMICAL COMPOSITION

COMPOSITION ANALYSIS WITH TA HYBRID XMAX

- Energy Range: $10^{18.2} \text{ eV} 10^{19.1} \text{ eV}$
- 3560 events after the quality cuts
- Systematic uncertainty of <Xmax>: ± 17 g/cm²
- QGSjetII-04 interaction model was compared with the data
 → agreement with light composition
- More events are needed to study highest energies

14 September 2022

Also working on more models

HYBRID COMPOSITION

9.5 yrs of data Adding even 5 years of TAx4 data will significantly improve separation

14 September 2022 26

CRIS 2022

HYBRID COMPOSITION

Simulation 9.5 yrs of data + 5 years TAx4 Data

CRIS 2022

Adding even 5 years of TAx4 data will significantly improve separation Data box/point shown is not changed but MC spots for elements get smaller due to smaller uncertainties

TALE FD XMAX STUDY

Table 2. Fit parameters to a broken line fit to TALE X_{max} elongation rate. The upper set of measurements are for the EPOS-LHC, the lower set is for QGSJetII-03. Uncertainty reported as $value \pm \sigma_{stat.} + \sigma_{sys.} - \sigma_{sys.}$.

EPOS-	break point	$17.291\ {\pm}0.060 + 0.077 - 0.084$
LHC	slope before	$35.863 \pm 0.294 + 1.481 - 0.536$
	slope after	$65.413 \pm 6.655 + 0.000 - 3.269$
QGSJet-	break point	$17.310\ {\pm}0.049 \pm 0.052 - 0.179$
II-03	slope before	$35.784 \pm 0.298 + 1.337 - 0.667$
	slope after	$70.860 \pm 6.508 \pm 0.000 - 11.387$

14 September 2022

COMPOSITION

- Detailed measurement of composition from 2 PeV to 2 EeV
 - Using TALE with Cherenkov-light dominated events
 - ApJ 909 (2021)178
- Fit to four species
 - Reduction in protons above the Knee
 - Getting heavier
- Elongation rate fit
 - Break at 160 PeV, 2nd Knee
 - Getting lighter above that

COMPOSITION

- TA SD composition: BDT analysis using 16 composition sensitive signals (12 years: 2008–2020)
 - Find light, unchanging composition above 1 EeV, with two different high-energy interaction models

CRIS 2022

14 September 2022

ANISOTROPY

The TA hot-spot with 12 years of data

- 179 events with *E* > 57 EeV
- 40 events in hot-spot, 25° circle, local 4.5σ significance, 3.2σ global

ANISOTROPY

TA Hot Spot announced 2014 in data E>57 EeV (ApJ **790** (2014) L21)

Now with 12 years of data

- 179 events with *E* > 57 EeV
- 40 events in hot-spot, 25° circle, local 4.5σ significance, 3.2σ global

The original brightness seems to not be sustained

- Still significantly higher than background
- Growth rate consistent with linear

SPECTRAL ANISOTROPY AT HOTSPOT

Abbasi+2018, ApJ, 862, 9.

Comparison between the averaged spectrum and the directional spectrum

"cold spot" at lower energies, same place as the hot spot at high

>10^{19.2} eV **3.7o post-trial significance**

14 September 2022

ANISOTROPY

At lower energies (above 40 EeV) see a new excess

• In the direction of the Perseus-Pisces Supercluster

ANISOTROPY

At lower energies (E> 40 EeV) see a new excess

• In the direction of the Perseus-Pisces Supercluster

Significance is still being worked out, will be greater than 3σ and less than 5σ

- Considered these energies motivated by TA-Auger energy spectrum difference
- Have to calculate the penalty factor carefully

SUMMARY – RESULTS FROM TELESCOPE ARRAY

Spectrum

- Spectrum measurements over >5 orders-of-magnitude in energy
- TAx4 has begun to measure and make a contribution to the TA spectrum >10 EeV
- TA finds a significant difference in its own spectra above and below 25° declination (agrees with Auger in overlapping region)
- Observation of the "instep" feature

High Energy Event Observed

• New high energy event: 2.4x10²⁰ eV - Approaching Fly's Eye (1991 OMG) particle energy: 3.2x10²⁰ eV

Composition

- Light-heavy-light pattern in 10¹⁵ 10¹⁸ eV energy range using TALE (w Cherenkov)
- Appears Light and Steady for E> 10¹⁸ eV Anisotropy
- Hotspot persists, but significance not increasing very quickly
- New significant excess at slightly lower energy in conjunction with the Perseus-Pisces Supercluster

Future

- Need to Improve statistics especially for Anisotropy and Composition measurements
- Complete TAx4 and take more data!!

CRIS 2022

ANISOTROPY

At energies above 8.8 EeV

- Look for dipole (a la Auger)
- TA 12-yr result : $r_{\alpha} \simeq 3.1\%; \phi_{\alpha} \simeq 134^{\circ}$
- Auger 2017 result : $r_{\alpha} \simeq 4.7\%; \phi_{\alpha} \simeq 100^{\circ}$

CRIS 2022

