Multi-messenger implications of the Pierre Auger Observatory measurements

Vladimír Novotný^a for the Pierre Auger Collaboration^b

 ^a Institute of Particle and Nuclear Physics, Charles University, Prague, Czech Republic
 ^b Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina Full author list: https://www.auger.org/archive/authors_2022_09.html

12th Cosmic Ray International Seminar

"The endless multiple voices fugue of the Universe"

15 September 2022

The Pierre Auger Observatory

Surface detector (SD)

- 1600 water-Cherenkov stations
- spacing 1500 m
- area ~3000 km²
- duty cycle ~100 %

Fluorescence detector (FD)

- 4 sites with 24 telescopes
- looking horizontally -0° 30° in elevation
- duty cycle ~14%

Low-energy extension

- 3 High-Elevation Auger Telescopes (HEAT)
- 50 additional SD stations to form 750 m array

... a lot of other instruments and techniques ...

[Nucl. Instrum. Meth. A 798 (2015) 172-213]

Hybrid detection of extensive air showers

Outline of searches

UHE photons and neutrinos

- diffuse flux
- point-like sources
 - steady
 - transient

Correlations between UHECRs and neutrinos

- neutrinos from IceCube + ANTARES
- UHECRs from Auger Observatory + TA

Upward-going showers – ANITA follow up

- would not fit into the Standard Model
- FD exposure for general usage
 - application to τ lepton model

Vladimír Novotný

Diffuse UHE photons

Photon showers vs. UHECRs:

- smaller footprint
- less muons
- deeper X_{max}

Three different analyses

- SD
 - steeper LDF, longer risetime
- hybrid
 - deep X_{max} , muon content from shower universality
- hybrid from low-energy extension
 - deep X_{max} , S_b , number of triggered stations

$$S_b = \sum_i S_i \times \left(\frac{R_i}{1000 \text{ m}} \right)^b$$

6

5 F

3

-0.4

-0.2

0

ß

0.2

0.4

Entries (normalized)

Vladimír Novotný

Multi-messenger implications of the Pierre Auger Observatory measurements

0.6

Diffuse UHE photons

Photon showers vs. UHECRs:

- smaller footprint
- less muons
- deeper X_{max}

Three different analyses

- **SD**
 - steeper LDF, longer risetime
- hybrid
 - deep X_{max} , muon content from shower universality
- hybrid from low-energy extension
 - deep X_{max} , S_b , number of triggered stations

[[]ApJ 933 (2022) 125]

candidates compatible with background expectation

Upper limits on the integral above E₀ of the flux *kE*⁻² (such flux expected in all searches)

Vladimír Novotný

Diffuse UHE neutrinos

Neutrino showers vs. UHECRs:

- interaction deep in the atmosphere or in Earth
- sizable EM component for inclined geometries

Three SD data sets (channels)

- downward-going ν_{e} , ν_{u} , ν_{τ} CC/NC
 - low zenith (**DGL**) $60^{\circ} < \theta < 75^{\circ}$
 - high zenith (**DGH**) $75^{\circ} < \theta < 90^{\circ}$
- Earth-skimming (**ES**) ν_{τ} CC only 90° < θ < 95°
- due to optimization of selection
 - AoP, L/W and apparent velocity

even more efficient selection than for photons

ES channel

Vladimír Novotný

Diffuse UHE neutrinos

Neutrino showers vs. UHECRs:

- interaction deep in the atmosphere or in Earth
- sizable EM component for inclined geometries

Three SD data sets (channels)

- downward-going $\nu_{_{e}},\,\nu_{_{\mu}},\,\nu_{_{\tau}}$ CC/NC
 - low zenith (**DGL**) $60^{\circ} < \theta < 75^{\circ}$
 - high zenith (**DGH**) $75^{\circ} < \theta < 90^{\circ}$
- Earth-skimming (**ES**) ν_{τ} CC only 90° < θ < 95°
- due to optimization of selection

- AoP, L/W and apparent velocity

[JCAP 10 (2019) 022]

no candidates

Upper limits on differential flux

Vladimír Novotný

Diffuse UHE neutrinos

Neutrino showers vs. UHECRs:

- interaction deep in the atmosphere or in Earth
- sizable EM component for inclined geometries

Three SD data sets (channels)

- downward-going ν_{e} , ν_{u} , ν_{τ} CC/NC
 - low zenith (**DGL**) $60^{\circ} < \theta < 75^{\circ}$
 - high zenith (**DGH**) $75^{\circ} < \theta < 90^{\circ}$
- Earth-skimming (**ES**) ν_{τ} CC only 90° < θ < 95°
- due to optimization of selection
 - AoP, L/W and apparent velocity

[JCAP 10 (2019) 022]

Some models of $\boldsymbol{\nu}$ production ruled out

Vladimír Novotný

Neutrinos from point-like sources

Auger 2018

 $10^{14} \text{ eV} \le E_{\nu} \le 10^{17} \text{ eV}$

10

10s⁻¹) cm⁻² 5

 10^{-7}

Auger Earth-Skimming

Auger DGH $75^\circ < \theta < 90^\circ$

 $E_{\nu} < 10^{17} \text{ eV}$

 $< \theta < 75^\circ$

Auger DGL 60°

Upper limits 90% CL

 $10^{17} \text{ eV} < E_{\nu} < 2 \times 10^{19}$

IceCube 2017

Single flavor

 $v_{\mu}: v_{\tau} = 1:1:1$

ANTARES 2017

Steady sources

- exposure calculated for particular sky positions (δ , α)

Transient events

- GW170817 (NS-NS merger) observed in ES channel
- TXS 0506+056 (blazar with IceCube v) less convenient position

Correlations between UHECRs and neutrinos

Catalogues of UHECRs and neutrinos - full sky covered

- UHECR Pierre Auger Observatory, Telescope Array
- neutrinos IceCube, ANTARES

Three searches (1+2 include deflections of UHECRs in GMF)
1) for point-like v sources in UHECR directions
2) for excess of UHECRs in astrophys. v directions
3) two-point correlation of UHECRs and high-energy vs

Vladimír Novotný

Multi-messenger implications of the Pierre Auger Observatory measurements

[Astrophys.J. 934 (2022) 164]

Correlations between UHECRs and neutrinos

[Astrophys.J. 934 (2022) 164]

Vladimír Novotný

Unusual upward-going showers in ANITA

ANITA baloon experiment

- ~37 km above Antarctica
- detects radio pulses from EASs looks for $\nu_{_{T}}$
- reflected vs. direct observation from polarity
 - two anomalous events too negative elevation
 - does not fit the Standard Model prediction for $\nu_{_{\! \tau}}$

event, flight	3985267, ANITA-I	15717147, ANITA-III
date, time	2006-12-28,00:33:20UTC	2014-12-20,08:33:22.5UTC
Lat., Lon. ⁽¹⁾	-82.6559, 17.2842	-81.39856, 129.01626
Altitude	2.56 km	2.75 km
Ice depth	3.53 km	3.22 km
El., Az.	$(-27.4 \pm 0.3^{\circ}, 159.62 \pm 0.7^{\circ})$	$(-35.0 \pm 0.3^{\circ}, 61.41 \pm 0.7^{\circ})$
RA, $Dec^{(2)}$	282.14064, +20.33043	50 .78203, +38.65498
$E_{shower}^{(3)}$	$0.6\pm0.4~{ m EeV}$	$0.56^{+0.3}_{-0.2}$ EeV

¹ Latitude, Longitude of the estimated ground position of the event.

² Sky coordinates projected from event arrival angles at ANITA.

³ For upward shower initiation at or near ice surface.

[Phys. Rev. Lett. 121 (2018) 161102]

Vladimír Novotný

Upward-going showers at the Auger Observatory

SD

- could detect Earth-skimming EASs only for $\theta < 95^\circ$
 - geometrically limited by lateral spread of showers

FD

- sensitive at all zenith angles
 - exposure from Monte Carlo simulations
- monocular reconstruction instead of hybrid
- precise selection and background estimation needed
 - ordinary UHECRs can mimic upward geometry in mono.
 - extensive MC of downward-going showers

reconstruction of shower axis

Vladimír Novotný

Signal and background

Signal simulations

- zenith limited to 110°-180° ES channel of ν_τ omitted
- FD sensitivity decreases with altitude of the first interaction
 - H_{fi} sampled between 0 km 9 km

Background simulations and data cleening

- background sims. used to define cuts
 - large volume needed to cover all geometries
 - every event reconstructed as downward- and upward-going
 - profile-constrained geometry fit maximum likelihood for each rec.
 - selection confirmed on a burnt sample (10 % of all data)

$$l = \frac{\arctan\left(-2\log\left(L_{\text{down}}/\max(L_{\text{up}}, L_{\text{down}})\right)/50\right)}{\pi/2}$$

Vladimír Novotný

Results

1 candidate event observed

- compatible with background

 $n_{\rm bkg} = 0.45 \pm 0.18$

Exposure evaluated up to $E = 10^{18.5} eV$

- for three zenith angles separately + combined
- significant height dependence

Integral limits

- valid for two spectral indeces $\gamma = -1, -2$

$$F_{\gamma=1}^{95\%}(E_{cal} > 10^{17.5} \text{ eV}) = 3.6 \cdot 10^{-20} \text{ cm}^{-2} \text{sr}^{-1} \text{s}^{-1}$$

$$F_{\gamma=2}^{95\%}(E_{cal} > 10^{17.5} \text{ eV}) = 8.5 \cdot 10^{-20} \text{ cm}^{-2} \text{sr}^{-1} \text{s}^{-1}$$

Preliminary

[PoS (ICRC 2021) 1140]

Limits on τ flux

Example application of double-differential exposure

- production of τ leptons by non-specified process (beyond SM)
- D_{inj} between -50 km and 26.3 km
- only cases 3 and 5 visible in FD
- decays of τ into $\pi,$ K or e produce EAS with E_{sh}

[[]PoS (ICRC 2021) 1145]

Limits on τ flux

Upper limits on τ flux near ground

- E_{sh} backtracked to primary energy of τ , $E_{0,\tau}$
- two spectral incices of the τ flux assumed
 - propagate to the $E_{0,\tau}$ dependence of E_{sh}

Exposure in zenith bins + total one

- dominated by inclined geometries
- limits available also for specific θ ranges

Conclusions

No UHE photon nor neutrino signals observed

- upper limits presented diffuse and point-like sources
- diffuse photon limits close to some cosmogenic production models
- diffuse neutrino limits competitive with IceCube and ANITA
 - Earth-skimming channel the most important
 - some models of ν production already ruled out

No correlation between high-energy neutrinos and UHECRs confirmed

- deflections of UHECRs in Galactic magnetic field are included in searches

No upward-going showers observed for zenith > 110°

- 1 candidate event compatible with background expectation
- preliminary study, details to be finalized

Backup

Diffuse UHE photons

Vladimír Novotný

UHE photons from GW events

Similar analysis as for transient neutrino sources

- GW events selected to match either of the classes:

UHE neutrinos from TXS 0506+056

eCube: v-flux 0.5 vr

Limits on τ flux

Upper limits for the two spectral indices of the τ flux in three zenith angle ranges

Vladimír Novotný