Radio detection of ultrahigh-energy cosmic rays and neutrinos

Katharine Mulrey 13 September CRIS 2022

K. Mulrey

Where do the most energetic particles come from?

K. Mulrey

Where do the most energetic particles come from?

Detecting comic-ray air showers

K. Mulrey

Radio emission from air showers

- Generated in the electromagnetic components of the air shower
- Radiation pattern, signal strength, and pulse shapes contain information about shower development

Radio emission from air showers

"Cherenkov-like" effects: signal coherence

de Vries et al. PRL 107:061101,2011

CRIS 2022

CRIS 2022

K. Mulrey

K. Mulrey

Reproduce pulse shape and signal strength

Scan across the Cherenkov cone

Scaling of signal strength with magnetic field

K. Bechtol, et al. PRD. (2022)

CRIS 2022

Radio experiments: cosmic rays

K. Mulrey

Cosmic Ray Detection at LOFAR

K. Mulrey

LOFAR Family Meeting 2022

+ stations outside Superterp, 30-80 MHz

K. Mulrey

LOFAR Family Meeting 2022

P. Schellart et al., A&A 560, 98 (2013)

אונים אלי איי אין איינער איין איירא איירא איירא איין איירא איין איירא איין איירא איין איירא איין איירא אייראאי דער איין איירע אייראאיין איירא אי

K. Mulrey et al. 2019

Absolute calibration makes radiobased energy measurements possible

K. Mulrey

K. Mulrey

Looking forward...

K. Mulrey - NAC 2022

Looking forward...

LOFAR 2.0

- Continuous observation
- Simultaneous observation with low + high band antennas

Cosmic rays at SKA

LOFAR

- X_{max} resolution: 20 g/cm²
- Energy resolution: 9%
- Core resolution: 3-10 m
- Northern hemisphere

SKA

- X_{max} resolution: 6-8 g/cm²
- Energy resolution: 3%
- Core resolution: 50 cm
- Southern hemisphere

K. Mulrey

Radio at Auger

Jörg R. Hörandel, CRIS 2018

Radio at Auger

A. Aab et al., PRD 93 (2016) A. Aab et al., PRL 116 (2016)

B. Pont PoS(ICRC2021)387

K. Mulrey

CRI<u>S 2022</u>

Radio at Auger

Radio Upgrade

Electronics development @ Radboud

Deployment NOW!

K. Mulrey

Radio Detection Experiments

1. Huege. 1 Hysics hepolits, 020.1-52,

UHE neutrino Snowmass: Ackermann et al, arXiv:2203.08096

UHE neutrino Snowmass: Ackermann et al, arXiv:2203.08096

- Modular
- Large detection area

K. Mulrey

BEACON

Beamforming Elevated Array for COsmic Neutrinos

S. Wissel et al. JCAP 2020

BEACON

Beamforming Elevated Array for COsmic Neutrinos

Candidate CR event

GRAND

K. Mulrey

In-ice radio experiments

CRIS 2022

CRIS 2022

RNO-G

- Make use of the thick ice in Greenland
- Design based on ARA and ARIANNA experience
- 35 stations with ~1 km spacing
- Design study for IceCube Gen2

K. Mulrey

Deployment 2021 -

RNO-G

K. Mulrey

K. Mulrey

Thanks!

K. Mulrey

Where do the most energetic particles come from?

Hillas criterion: $E_{max} \propto Z e B r$

E_{Fe, max}= 26 x E_{p,max}

- Below 10¹⁹ eV, can't point directly to sources
- Transition to heavier composition indicates the maximum source energy is reached

To answer this question, we need to determine the *energy* and *composition* of cosmic rays.

K. Mulrey

K. Mulrey

Event Analysis

- Simulate ~30 P and Fe showers with realistic atmosphere and known arrival direction (natural distribution of X_{max})
- Calculate reduced χ^2 for each simulation
- Parabola fit determines event X_{max}
- Resolution < 20 g/cm²
- Systematic uncertainties < 9 g/cm²

$$E_{\rm radio} = f_r \times E_{\rm sim}$$

Free parameters: energy and core position

K. Mulrey

T. Huege et al. AIP Conf.Proc. 1535 (2013) no.1, 128

K. Mulrey

LOFAR Family Meeting 2022