

Exploring Binary Cesium-based Photocathode Materials via High-Throughput Density Functional Theory Calculations Holger-Dietrich Saßnick¹ and Caterina Cocchi^{1,2}

¹Carl von Ossietzky Universität Oldenburg, Physics Department, 26129 Oldenburg ²Humboldt-Universität zu Berlin, Physics Department and IRIS Adlershof, 12489 Berlin

22nd September, 2022

Motivation and Goals

- Nowadays syntheses methods are still strongly relying on expensive trial-and-error approaches.
- Introduce a theoretical framework that gives insight into relationships between structural features and the material's properties.
- As a starting point we focus on "simple" binary systems that are well known and studied.

Experimental Collaborators

Sponsors

HZB Helmholtz Zentrum Berlin Prof. Dr. Thorsten Kamps, Dr. Sonal Mistry and team.

Bundesministerium für Bildung und Forschung

Niedersächsisches Ministerium für Wissenschaft und Kultur

Ab-initio methods like density functional theory (DFT) allow the calculation of material's properties without empirical parameters.

Landbarian 138.91	Cristian 143.12	Pr Pr 140.91	Nrendymians 144.24	$\Pr_{\text{Fromethian}}^{61}$	⁶² Sm ^{3amarism} 150.36	Eu Eu 111.96	Gadediaian	⁶⁵ Tb ^{Tryliam} 118-93	Dyspressions 162.50	07 Ho Holasium 104.93	$\mathop{Er}\limits_{{}^{Erbiass}}_{167.26}$	⁰⁹ Tm ^{Thalises} 108.83	173.05	71 Lu 174.07
$\mathop{\rm Actinism}\limits_{\scriptscriptstyle (227)}^{^{\rm 89}}$	$\overset{^{90}}{\underset{^{232.04}}{}^{70}}}$	Protactinium 231-04	$\mathop{U}_{\scriptstyle \text{Uranium}\atop\scriptstyle 238-03}^{\scriptscriptstyle 02}$	$\mathop{Neptamban}\limits_{(237)}^{^{93}}$	$\mathop{\mathbf{Platentiam}}_{^{(244)}}^{^{94}}\!$	$\mathop{\mathbf{\hat{A}m}}_{\scriptscriptstyle{(243)}}^{\scriptscriptstyle{(05)}}$	$\mathop{\mathbf{Cnrises}}\limits_{\scriptscriptstyle{(247)}}^{^{56}}$	$\mathop{\mathbf{Bk}}_{(247)}^{\scriptscriptstyle 07}$	⁵⁸ Cf (251)	⁹⁹ Es Einstraison (232)	$\mathop{Fm}\limits_{(237)}^{100}$	Mendelevian (25%)	Non-	¹⁰³ Lr (200)

εΣ**t**

Cs₃Sb Cs₂Te SCAN GOWO 3 3 Energy (eV) 2 2 0 Ω $^{-1}$ $^{-1}$ ŵκ x ż Ŵ X Ś Ý È Ù Ŕ Ť 7 PBE SCAN SCAN+SOC GoWo@PBE BSE E×p. Cs₃Sb Egap 0.65 1.21 1.06 1.19 E_{gap}^{opt} (**k**-point) 1.02 (F) 1.46 (X) 1.31 (X) 1.53 (F) 1.44 (F) 1.6^{1} Cs₂Te Egap 1.76 2.26 2.06 2.45 E_{gap}^{opt} (**k**-point) 1.76 (F) 2.26 (F) 2.06 (F) 2.45 (F) 1.60 (F) 3.3^{2}

¹ Spicer, Phys. Rev. 1958, 112, 114-122; doi: 10.1103/PhysRev.112.114

² Powell, Spicer, et al., Phys. Rev. B 1973, 8, 3987–3995; doi: 10.1103/PhysRevB.8.3987

Saßnick and Cocchi, *Electron. Struct.* 2021, 3, 027001: doi: 10.1088/2516-1075/abfb08 Cocchi and Saßnick, *Micromachines* 2021, 12(9), 1002; doi: 10.3390/mi12091002

Calculation results include electronic band structures

Calculation results include electronic band structures

¹ Spicer, Phys. Rev. 1958, 112, 114-122; doi: 10.1103/PhysRev.112.114

² Powell, Spicer, et al., Phys. Rev. B 1973, 8, 3987–3995; doi: 10.1103/PhysRevB.8.3987

Saßnick and Cocchi, *Electron. Struct.* 2021, 3, 027001: doi: 10.1088/2516-1075/abfb08 Cocchi and Saßnick, *Micromachines* 2021, 12(9), 1002; doi: 10.3390/mi12091002

And the projected density of states of the electrons

Saßnick and Cocchi, Electron. Struct. 2021, 3, 027001: doi: 10.1088/2516-1075/abfb08

High-throughput methods and their benefits

Better insight into microstructure

Synthesis route via PVD results in polycrystalline materials:

By restricting the screening space to a binary system, crystal structures that are likely to form during the syntheses process can be theoretically calculated.

Identifying novel materials

synthesis and experimental analysis of a large manifold of materials is very expensive.

Screening of a manifold of different material classes to check suitability for the application.

Antoniuk, Schindler, et al., Adv. Mater. 2021, 2104081; doi: 10.1002/adma.202104081

The technical implementation of a high-throughput workflow SAiiDA

The high-throughput workflow has been designed using AiiDA. Huber, Zoupanos et al., Scientific Data 2020, 7, 300; doi: 10.1016/j.commatsci.2020.110086 Uhrin, Huber et al., Comp. Mat. Sci. 2021, 187; doi: 10.1016/j.commatsci.2020.110086

The Cs-Sb system

Distribution of the crystal structures:

^{Carl von Ossietzky} Universität Oldenburg

The Cs-Te system

40 Nr. of structures triclinic monoclinic orthorhombic tetragonal 20 trigonal hexagonal cubic 1.0 0.0 0.2 0.4 0.6 0.8 X_{Cs} Stability: Band gap: CsTe₂ CsTe Cs₂Te CsTe₂ CsTe Cs₂Te Te Cs Te Cs oamd MP *E*^{form} (eV/atom) 0.0 -0.2 -0.2 < 0.05 eV/atom SCAN Band gap (eV) > 0.05 eV/atom triclinic monoclinic orthorhombic tetragonal trigonal hexagonal cubic Convex hull 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 XCs XCs

Distribution of the crystal structures:

► $E_{form}(Cs_xTe_{1-x}) = E(Cs_xTe_{1-x}) - [xE(Cs) + (1-x)E(Te)]$ Saßnick and Cocchi, J. Chem. Phys. 2022, 156, 104108; doi: 10.1063/5.0082710

9/18

Changing electronic character with composition

Saßnick and Cocchi, *J. Chem. Phys.* 2022, 156, 104108; doi: 10.1063/5.0082710

Changing electronic character with composition

Saßnick and Cocchi, J. Chem. Phys. 2022, 156, 104108; doi: 10.1063/5.0082710

Carl von Ossietzky Universität Oldenburg

Most stable phases with the experimental composition of 2:1(1)

- ▶ 10 different crystals have a distance to convex hull smaller than 0.05 eV/atom.
- Based on their structural similarity 4 groups can be distinguished.
- ▶ For the latter calculations only the structure with the highest symmetry is considered:

Pnma [62] (orthorhombic)

R3 [146] (trigonal)

⁰ eV is set to the valence band maximum (VBM). Saßnick and Cocchi, *J. Chem. Phys.* **2022**, 156, 104108; doi: 10.1063/5.0082710

Carl von Ossietzk

Universität Oldenburg

0 eV is set to the valence band maximum (VBM). Saßnick and Cocchi, *J. Chem. Phys.* 2022, 156, 104108; doi: 10.1063/5.0082710

Carl von Ossietzky

Universität Oldenburg ^{Carl von Ossietzky} Universität Oldenburg

The role of surfaces in the photoemission process

εΣt

How to model a surface?

The surface breaks the periodicity in one dimension, thus making it necessary to treat this direction with non-periodic boundary conditions:

resulting in slabs which contain two surface facets:

Richard Schier is presenting a poster on the simulation of CsK₂Sb-surface facets (arxiv: 2208.05843).

Carl von Ossietzky Universität Oldenburg

$\varepsilon \Sigma t$

Ter. 1

Ter. 2

Ter. 3

(100)

Ter. 1

Ter. 2

Ter. 3

Saßnick and Cocchi, in preparation.

Surface Stability

Surface properties of the Cs_8Te_4 [62] *Pmna* phase

0 eV is set to the valence band maximum (VBM). Saßnick and Cocchi, *in preparation*.

Surface properties of the Cs_8Te_4 [62] *Pmna* phase

0 eV is set to the valence band maximum (VBM). Saßnick and Cocchi, *in preparation*.

Overview of the electronic properties of all surface facets

Saßnick and Cocchi, in preparation.

Conclusions

- ▶ First approximation of the stability of different bulk phases and surface facets.
- Analysis of relationship between compositional changes and electronic properties.
- ► Additional (theoretically) stable structures found at experimentally relevant compositions.
- The largest band gap is reached at a composition of 2:1 due to fully occupied Te p-states for Cs-Te.
- Surface facets tend towards metallic properties in Cs-rich environments accompanied with a reduction in the ionization potential.
- The routine can be applied to any material-system and we are planning to publish the source code soon.