

Stoichiometry control and automated growth of alkali antimonide photocathode films by molecular beam deposition

Vitaly Pavlenko

European Workshop on Photocathodes for Particle Accelerator Applications Milano, Italy September 22, 2022

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA.

This presentation is based on:

Applied Physics Letters	ARTICLE	scitation.org/journal/apl			-
Stoichiometry control and automated growth of alkali antimonide photocathode films by molecular beam deposition				Appl. Phys. Lett. 120 , 091901 (2022); <u>https://doi.org/10.1063/5.0080948</u>	
Cite as: Appl. Phys. Lett. 120 , 091901 (2022); doi: 10.1063/5.0080948 Submitted: 5 December 2021 · Accepted: 10 February 2022 · Published Online: 1 March 2022		View Online	Export Citation	CrossMark	
Vitaly Pavlenko, a) 🕞 John Smedley, 💼 Alexander Scheinker, 💼 Ryan L	. Fleming, 🝺 Anr	na Alexand	er, 🝺		
Mark A. Hoffbauer, 🗈 and Nathan A. Moody 🗈					
Mark A. Hoffbauer, 🕞 and Nathan A. Moody 🕞 AFFILIATIONS					
Mark A. Hoffbauer, D and Nathan A. Moody D AFFILIATIONS Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico 8	7545, USA				

Acknowledgements

- Team: John Smedley (now SLAC) Alexander Scheinker Ryan L. Fleming Anna Alexander Mark A. Hoffbauer Nathan A. Moody
 Tech support: Fangze Liu and Anju Poudel
- Discussions: Dimitre Dimitrov, Enrique Batista, and John Lewellen
 (now SLAC)
- Funding: Laboratory Directed Research and Development program of LANL, projects 20190536ECR, 20210595DR, and 20220058ER.

INTRO: Roughness is always bad for MTE

From: G. S. Gevorkyan, S. Karkare, S. Emamian, I. V. Bazarov, and H. A. Padmore, Effects of physical and chemical surface roughness on the brightness of electron beams from photocathodes, Phys. Rev. Accel. Beams **21**, 093401 (2018)

INTRO: Co-deposition produces smoother films

From: Jun Feng, Siddharth Karkare, James Nasiatka, Susanne Schubert, John Smedley, and Howard Padmore, Near atomically smooth alkali antimonide photocathode thin films, Journal of Applied Physics **121**, 044904 (2017)

INTRO: Real-world co-deposition of mono-alkalis

Fluxes are being adjusted, what is the algorithm?

"... many growers adjust their reactant fluxes to maximize the quantum efficiency (QE) of the growing photocathode at a convenient wavelength."

From: Alice Galdi, William J. I. DeBenedetti, Jan Balajka, Luca Cultrera, Ivan V. Bazarov, Jared M. Maxson, and Melissa A. Hines, The effects of oxygen-induced phase segregation on the interfacial electronic structure and quantum efficiency of Cs_3Sb photocathodes, J. Chem. Phys. **153**, 144705 (2020)

LOS Alamos

But QE is a function of film thickness

Figure 21. Variation of resistance and photoemission during formation of alkali antimonide photocathodes: curve I for *n*-type materials and curve II for *p*-type materials.

7

INTRO: Real-world co-deposition of bi-alkalis

From: H. Panuganti, E. Chevallay, V. Fedosseev, M. Himmerlich, Synthesis, surface chemical analysis, lifetime studies and degradation mechanisms of Cs-K-Sb photocathodes, Nuclear Inst. and Methods in Physics Research, A **986** (2021) 164724

Algorithm description: "slope of the *in situ* photocurrent as the driver for the growth process"

Human-mediated algorithms typically do not work well.

8

Thickness-independent photoemission parameter(s) vs stoichiometry Corroboration: excess Cs (

Cs flux / Sb flux (a.u.)

Corroboration: excess Cs removal experiments & thermal decomposition experiments

- Time axis effectively represents stoichiometry
- Cs/Sb atomic flux ratio close to 3 for low substrate temperature
- Minimum of QE_{405nm}/QE_{532nm} approximately coincides with QE maximum
- To facilitate process control, need to remain is Cs-rich growth mode, otherwise need elaborate extremum seeking

Process control: stabilizing thickness-independent photoemission parameter

Feedback loop is an essential part of process control.

PREREQUISITES:

- Reasonably stable calibrated sources
- Cs-rich growth mode
- Software PID feedback loop with pre-determined gains (Ziegler-Nichols method) or other properly tuned algorithm

Process control: stress test

- Sb flux keeps up with Cs flux! (Sb flux "knows" nothing about Cs flux value or derivative, it is merely a function of film's photoemission)
- Time lag is about 500 s, including significant instrumental factor
- Ratio of fluxes and stoichiometry (both inferred) are maintained with a few % precision
- Max/min growth rate here is about 2.5, practically achievable range much larger
- Excellent tool for more accurate estimates of starting fluxes

Thin film growth recipes that we can share

• Recipes for photoemissive materials

- Substrate temperature (low, difficult to calibrate but solvable)
- Growth rate (proxy such as Sb flux), including variable
- Stoichiometric offset(s) based on photoemission

Calibration uncertainties do not matter too much. Accurate QE measurements do not require crosscalibration between the labs.

Future Plans: Technology Maturation and Transfer

Thank you for your attention!

Questions?

