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@ Outline

» Motivation:
—Cs,;Sb for brighter electron beams
— Surface disorder and emittance degradation

 Methods:

—RHEED monitored molecular beam epitaxy

* Results: epitaxy of Cs;Sb phase! (first time!)
—First band structure measurements of Cs;Sb thin films

* Results: new phase!
— Atomically smooth CsSb films: a visible light photoemitter with enhanced oxygen robustness

* Future work and conclusions
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Cs,Sb for low emittance, high current

@ Beam current: quantum efficiency, laser fluence, lifetime
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Why does this matter for applications?
Because both heterogeneity enhaced by

oxidation and roughness degrade MTE
(besides QE degradation in poor vacuum)
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@ Single crystalline photocathodes: epitaxy

S

Epitaxy is the growth of a crystal Epitaxial single-oriented films would allow:

layer with one or more well-defined * Roughness control
orientations with respect to an « Orientation control = surface potential control
underlying crystal seed layer * Measurements of intrinsic properties

(usually a single crystal substrate) (optical constants, band structure, intrinsic

MTE...)

1) Choose the method: MBE

2) Select suitable substrates
3) Identify suitable growth conditions

re-evaporation

adsorption

[
/ diffu

ion ‘/
o0 o0 50 O
nucleation

reaction-interdiffusion




Previous results

Our work builds on many experimental results obtained

via in-operando characterization of the growth of alkali
antimonide thin films with different techniques.
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@ Cs,;Sb structure and possible epitaxial relations 48

Jack and Wachtel (1957)

Fd3m : :
Based on previous studies, we selected
1% Sh +3x Cs 3C-SiC as substra_te
(but also tested: TiO, , MgF,)
A Galdi, et al. Applied Physics Letters 118 (24), 244101
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&D RHEED assisted MBE @ PARADIM S

PARADIM Thin Film User Facility

* Molecular Beam Epitaxy System Reflection High Energy Electron Diffraction
* In Operando high energy electron diffraction (RHEED)
Ppase = 2x107° torr (RHEED)

* Sample Transfer System
* In Situ Quantum Efficiency Station (biased pickupcoil) —— TTTTTTTTTTI - """""""
Ppase = 1107 torr / \
«  ARPES/XPS System - Sample
* Scientia DA30 electron analyzer -
, 15kV e” gun

e Fermi Helium Plasma discharge lamp
* Specs XR50 Al/Mg X-ray source
*  Pp.e=7x101torr

Detector

MBE loadlock

Angle Resolved Photoemission Spectroscopy
(ARPES)

STORAGE

Helium plasma
discharge lamp
hv=21.22, 40.81 eV
(+X-ray tube

QE measuring station Mg/Al anode - Hemispherical
vacuum suitcgse 1.254/1.487 keV) a b electron analyzer
Epuee = 2-100 €V

Transfer chamber

ARPES loadlock



&P RHEED assisted MBE @ PARADIM S

PARADIM Thin Film User Facility

* Molecular Beam Epitaxy System o Reflection High Energy Electron Diffraction
* In Operando high energy electron diffraction (RHEED)
Ppase = 2X107° torr (RHEED)
* Sample Transfer System
* In Situ Quantum Efficiency Station (biased pickupcoil) —— TTTTTTTTTmTTTImTA - """""""
Ppace = 1x10 9 torr /' T
«  ARPES/XPS System - Sample
* Scientia DA30 electron analyzer -
* Fermi Helium Plasma discharge lamp 15kV e gun
* Specs XR50 Al/Mg X-ray source
* Ppae = 7x10™ torr Detector

Angle Resolved Photoemission Spectroscopy
(ARPES)

Helium plasma
discharge lamp
hv=21.22, 40.81 eV
(+X-ray tube

Mg/Al anode
1.254/1.487 keV) a

Hemispherical
b electron analyzer
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The experiment

Typical photocathode growth:

Photocurrent monitored
Quantum efficiency oriented

heater

Our growth method:
RHEED monitored
Structure oriented

Substrate

Light source

: |~ Current

heater
Substrate
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@ Information provided by RHEED

Single crystal

®=0°

|

11

Fluorescent screen

By rotating the sample
around its surface normal,
we intersect different sets
of reciprocal space rods

* Real-time
« Sub-ML sensitivity

« Qualitative probe of surface roughness and

crystallinity

Single crystal
High coherence

Film
Reduced coherence
Roughened surface

Film
Polycrystalline
domains/impurities



@ Temperature study: codeposition @ﬁ

* Cs-Sb co-deposition on SiC substrates

: . Higher Growth Temperature
—Cs:Sb ratio = 6:1 (as measured by Quartz Crystal Microbalance) . P

10" A=504 nm
Improved Crystal Order
. OOP Film Orientation
E_ 107 = _ Reduced Surface Roughness
S Polycrystalline Fiber texture Reduced Quantum Efficiency
c Rough @
= Flat
=3
g 10 3 0
g Lower Growth Temperature
&
4 O e O
10 o
Low crystallinity
Rough o ©
o Improved Quantum Efficiency
4'0 6|0 8'0 1(')0 150 Polycrystalline Films

Growth Temperature (°C)



@ Solid Phase (Molecular Beam) Epitaxy {1

* Low Deposition temperature to take advantage of
Improved Cs sticking coefficient

» High temperature Cs anneal to improve crystallinity

T=85°C

T=400C A

Cs Shutter Open

Sb shutter open:
4 ML dose

Time




It Is epitaxial!
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It really Is Cs,;Sh: XPS and ARPES

Intensity (arb.u.)
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Quantum Efficiency
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@ Temperature study: codeposition @ﬁ

* Cs-Sb co-deposition on SiC substrates

: . Higher Growth Temperature
—Cs:Sb ratio = 6:1 (as measured by Quartz Crystal Microbalance) . P
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@ Flat co-deposited samples

Rotation Angle (°)
=180 . =18 . 290 -
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In vacuum
transfer to
STM

0.76 nm x 1.42 nm
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Flat co-deposited samples

Sb 3d (O 1s)
1 Sb metal
= Cs;Sb

= CsSb

Intensity (arb.u.)

Cs 3d
= CsSb
m Cs,Sb

Intensity (arb.u.)

-
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Binding energy (eV)

Cs:Sb~1:1
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Structure and composition data

suggest that the compound we are
forming is closely related to CsSb

720

CsShb parameters:

a=734A
b=757A
c=13.27 A

P1 structure




@ Current work in PHOEBE @ Cornell U. N

PHOEBE: PHOtocathode Epitaxy and BBeam Experlments Iaboratory

PRt Jgupee - gl@tuum suifcase Sampl T2 aaﬁn
1 gg ! i Aorenar

; Pjh tocath ‘eMBE

. * Study of epitaxial Cs;Sb and
; CsSb samples: spectral
response, lifetime, oxygen
resistance, mean transverse
energy




@ Conclusions Rt

* Epitaxy of Cs;Sb is achieved using molecular beam epitaxy via monitoring the sample
structure with RHEED

« State-of-the-art MBE machines and in-situ RHEED allow to explore various growth
regimes and efficient optimization of the samples beyond quantum efficiency
 High throughput:
—PARADIM experiments: 59 samples grown in 27 days (24h per day)
—PHOEBE: 75 Cs-Sb samples grown between 09/2021 and 08/2022

« Structure-oriented growth identifies an interesting phase: CsSb
— Atomically smooth
—Easily achievable via codeposition
—QE ~1% at 400 nm
—Robust against oxidation



Information provided by RHEED Nst,

Epitaxial island growth
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Transmission pattern:
Streaks turn into spots

Fiber texture

Polycrystalline islands

kOUt

No texture

/\

Textured film

No rotation dependence if
the texture axis is out-of-
plane (uniaxial)
Rotation dependence if
the texture axis is in-
plane (biaxial)




@ Epitaxial Relationship

Rotation Angle (°)

Substrate Fiber Texjcurefj Film Partially Ordered Film Epitaxial Film
Fully Ordered Only c-axis oriented

DGP_CS55
Cs;Sb/SiC
Deposit: 40C
Anneal: 85C
QE =2.14% @ 532nm
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