Plasma Photocathode

Carlo Benedetti

BELLA Center, Berkeley Lab

EWPAA 2022, Milan, Sep 20-22, 2022

Work supported by the U.S. DOE, Office of Science, Office of High Energy Physics, under Contract No. DE-AC02-05CH11231

Acknowledgements

BELLA (Berkeley Lab Laser Accelerator) Center:

- S. Barber
- S. Bulanov
- L. Fan-Chiang
- E. Esarey
- C. Geddes
- A. Gonsalves
- L. Obst-Huebl
- T. Ostermayr
- K. Nakamura
- C. Schroeder
- D. Terzani
- J. van Tilborg
- M. Turner
- T. Zhou

Work supported by the U.S. DOE, Office of Science, Office of High Energy Physics, under Contract No. DE-AC02-05CH11231

Outline

- Plasma-based accelerators (PBAs): Ο
 - Multi-GeV electron beams
 - Femtosecond bunch lengths
 - Sub-micron emittance
 - High-charge bunches Ο
 - \rightarrow PBAs enable high brightness e-beams
- Beam quality depends on injection methods: Ο
 - Self-trapping Ο
 - Plasma density gradient injection
 - Ionization injection Ο

Intense laser (red) drives a density wave (blue to yellow) in plasma, electrons (white) are trapped and accelerated with fields of order 10 GV/m.

Path to higher brightness electron beams with the "Plasma photocathode" (relevant for colliders or Ο radiation sources, e.g. x-ray FEL)

Plasma-based acceleration of electron bunches

- Plasma wave (wakefield) driven by ponderomotive force of intense laser [or space-charge field of particle beam]
- Electron displaced by driver (ions remain stationary) \rightarrow EM fields from charge separation \rightarrow plasma oscillations
- Focusing and acceleration provided by plasma wave
- Characteristic size of the plasma wave: $\lambda_p = 100 10 \mu m$ for plasma density $10^{16} 10^{19} \text{ cm}^{-3}$
- Characteristic strength of the wakefields: 10 –100 GV/m for plasma density 10¹⁶–10¹⁹ cm⁻³

$$E \sim E_0 = m_e c \omega_p / e \simeq 96 \sqrt{n_0 [\text{cm}^{-3}]}$$

Laser-driven plasma wakefield accelerator (LWFA):

Beam-driven plasma wakefield accelerator (PWFA):

Laser-driven plasma accelerator state-of-the-art: multi-GeV accelerator (~8 GeV in 20 cm)

BELLA driver laser

Capillary discharge waveguide

Off-axis paraboloid

Telescope

Vacuum

Heater laser

PW (40 J, 30 fs, 1Hz)

mrad

Momentum (GeV/c)

- Key technology: plasma channel creation for guiding at low density $(3 \times 10^{17} \text{ cm}^{-3})$ - discharge capillary + laser heater
- New technologies emerging: hydrodynamic optical-field-ionized plasma channels

Plasma-based accelerators enable high-brightness beams

- Plasma accelerators have the potential to yield high-brightness beams:
 - Rapid acceleration (>10 GV/m) + shielding from background ions reduce detrimental space-charge effects
 - Ultra-short bunches: $\sigma_z \ll \lambda_p$ (e.g., $\lambda_p \sim 10 \ \mu m$ for 10^{19} cm^{-3}) $\rightarrow 1-10 \text{ fs}$ (exp. measured) Buck et al., Nature Phys (2011) Lundh et al., Nature Phys (2011)
 - Low normalized emittances $\rightarrow 0.1 1 \,\mu\text{m}$ (exp. measured)
 - High charge in a monochromatic peak (< a few %) \rightarrow 10 -100 pC (exp. measured) $\frac{Kirc}{Got}$

 Weingartner et al., Phys Rev ST AB (2012)

Kirchen et al., PRL (2021) Götzfried et al., PRX (2020) Wang et al., PRL (2016)

Plateau et al., PRL (2012)

→ Higher quality beam generation (10s nm emittance) possible but requires "controlled / triggered" injection into plasma wave

Injection methods determine electron beam properties and quality

Injection (from background plasma) methods:

- Self-injection
- Triggered injection:
 - Plasma density gradient injection
 - Laser triggered injection
 - Colliding pulse injection
 - Laser ionization injection
 - Single laser pulse
 - Driver + laser injector
 ("plasma photocathode")

- Requires large amplitude wakefield \rightarrow high laser intensity

Laser strength:
$$a_0 = 0.85 \lambda [\mu m] \left(I [10^{18} W/cm^2] \right)^{1/2}$$

• Requires slow plasma wave velocity \rightarrow high plasma density

Wake velocity:
$$\gamma_p \sim rac{\omega_L}{\omega_p} \propto n^{-1/2}$$

Electron orbits in a laser-produced wakefield

 Trapping determined by the strength of the accelerating wakefield (laser strength) + wake velocity (plasma density)

self-

 $a_0 = 4$

trapping:

Self-injection trapping threshold

Benedetti et al., Phys Plasmas (2013)

- Trapping threshold a function of amplitude of the accelerating wake field (laser strength) and wake phase velocity (plasma density)
- Sub-micron emittance observed from self-trapping

Density gradient injection (downramp injection)

Ionization injection

Ionization injection: ionize bound electron (at rest) in trapped orbit of plasma wave using high-Z gas (e.g., Hydrogen doped with Nitrogen)

Large energy gains achieved operating at low density

Emittance dependence on injection method

• Characteristics of trapped e-beam determined by initial distribution of injected electrons (injection method)

→ Emittance from single-pulse ionization injection larger than that from downramp injection due large spread in initial transverse momenta

Plasma photocathode: higher brightness e-beams from two-color laser ionization injection

• **Two-color, two-pulse laser-ionization injection:** use two lasers of different wavelengths to separate plasma wave excitation (long wavelength) and ionization injection (short wavelength)

Laser electric field:
$$E=(2\pi m_e c^2/e)rac{a}{\lambda}$$

 \rightarrow Long wavelength laser for large ponderomotive force and plasma wave excitation

ponderomotive force:
$$F_{
m PMF} = m_e c^2
abla a^2/2$$

 \rightarrow Short wavelength laser for large peak electric field and ionization

Ionization rate:
$$w \propto \frac{E_a}{E} \exp\left[-\frac{2}{3}\frac{E_a}{E}\left(\frac{U_{\rm ion}}{U_{\rm H}}\right)^{3/2}\right]$$

• Requires: $a_i > \left(\frac{\lambda_i}{\lambda_0}\right) a$

BERKELEY LAB

Two-color ionization injection: charge vs emittance

Two-color ionization injection using CO2 drive laser can achieve 10s nm emittance with 10s pc charge.

Two-color ionization injection: proof-of-principle demo planned at LBNL

PIC simulation using INF&RNO (D.Terzani)

Plasma photocathode in a PWFA: experiments ongoing at SLAC

B. Hidding et al., PRL (2012)

- Use beam diver to excite plasma wave + ionization laser behind driver at low laser intensities resulting in lower beam transverse emittance ("Trojan horse" scheme)
- 10s of nm emittance observed in PIC simulations

Experiments ongoing at SLAC – FACET (completed) & II (planned)

Deng et al., Nature Phys. (2019)

20

y (mm)

Conclusions

- Plasma-based acceleration of electron beams:
 - Compact (>10 GV/m) source of 100 MeV to multi-GeV electron beams
 - Bunch length: ~few fs
 - o Sub-micron emittance
 - Brightness: $B_{5D} \sim 10^{18} \text{ A/(m-rad)}^2$
- Injection method enables control of initial beam phase space
- Path to higher brightness plasma accelerators using laser-triggered injection (plasma photocathode):
 10s pC charge + 10s nm emittance and potential to reach B_{5D} ~ 10²⁰ A/(m-rad)²

Thank you for the attention!