LCLS-II Photoinjector Commissioning # **LCLS-II Photoinjector Design Specifications** #### Cs₂Te was a conservative choice to meet these specifications | Bunch Charge | 100 pC | | |---|--|--| | Maximum Repetition Rate | 0.929 MHz | | | Photoinjector Energy | 100 MeV | | | Photoinjector Bunch Length | 1 mm, 3 ps | | | Photoinjector Peak Current | 12 A | | | Photoinjector Slice Emittance | 0.4 mm-mrad | | | Photoinjector Slice Energy Spread | ≤ 5 keV | | | Gun Energy | 750 keV | | | Gun Gradient | 19.5 MV/m | | | | ≤ 400 nA | | | Gun Dark Current | ≤ 400 nA | | | Gun Dark Current Gun vacuum w/ RF | $\leq 400 \text{ nA}$
$\leq 1 \times 10^{-9} \text{ torr}$ | | | | | | | Gun vacuum w/ RF | $\leq 1 \times 10^{-9} \text{ torr}$ | | | Gun vacuum w/ RF Intrinsic Emittance | ≤ 1x10 ⁻⁹ torr
≤ 1 μm/mm | | | Gun vacuum w/ RF Intrinsic Emittance Quantum Efficiency | ≤ 1x10 ⁻⁹ torr
≤ 1 µm/mm
≥ 0.5 % | | | Gun vacuum w/ RF Intrinsic Emittance Quantum Efficiency 1/e Lifetime | ≤ 1x10 ⁻⁹ torr
≤ 1 µm/mm
≥ 0.5 %
≥ 10 days | | | Gun vacuum w/ RF Intrinsic Emittance Quantum Efficiency 1/e Lifetime IR Delivered to Laser Heater | ≤ 1x10 ⁻⁹ torr
≤ 1 μm/mm
≥ 0.5 %
≥ 10 days | | #### **LCLS-II VHF Gun Dark Current** - There are two large sources and two small sources of dark current - Dark current may originate from the inner lip of the gun nose cone - Dark current generation seems to be stable over time - Spatial collimator added to remove > 95% of dark current - Typical: e-beam 16-18 mm diameter, 20 mm aperture $(3\mu A \rightarrow 100nA)$ # Performance of First Two Cs₂Te Photocathodes Used Zhou et al., PRAB **24**, 073401 (2021) - The first two Cs₂Te photocathodes used were produced by INFN/LASA. *Thank you!* - Unfortunately the QE was low due to a problem with <u>SLAC's</u> original suitcase but OK for commissioning - The intrinsic emittance measurement above is from the first Cs₂Te photocathode used - The intrinsic emittance matched the value assumed when designing the photoinjector - The measurement used the gun solenoid with the buncher turned off and < 1 pC of charge in the beam # Postmortem Analysis of 1st Photocathode Optical Image QE Map **Uncalibrated** XRF Signals Visible damage where QE degradation occurred **Optical Profilometry** - ~ 500 hours of operation, mostly at low rep rate - Studies: profilometry, XRF, RBS + PIXE - Homogeneous Cs:Te ratio of 1.8:1 - Thickness $0.05 \pm 0.02 \,\mu\text{m}$ - Slight bulge at defect but no clear step - Defect is smoother than surrounding area - No evidence for material loss # Postmortem Analysis of 2nd Photocathode Optical Image Visible damage QE Map **Uncalibrated** XRF Signals **Optical Profilometry** - \sim 200 hours of operation, <u>mostly at low rep rate</u> - Studies: profilometry, XRF, RBS + PIXE - Homogeneous Cs:Te ratio of 1.9:1 - Thickness $0.05 \pm 0.02 \,\mu m$ - Defect is similar to surrounding area - No evidence for material loss ### **Future LCLS-II Photocathode Post-Mortem Analyses** Molybdenum, < 0.15 kg - Goal is to map chemical composition and to correlate this with performance - Problem is that new compounds are produced when the photocathodes are exposed to air (understatement) - To do better will likely require capping in an inert layer to preserve the surface chemistry - Future analysis techniques will likely be destructive to the underlying plugs, e.g. FIB + TEM # **LCLS-II Photocathode Deposition System** - SLAC has grown ~20 photocathodes since 2020 - System has four physical vapor deposition sources that are reconfigurable to produce different materials following either sequential or co-deposition recipes (Cs₂Te, K₂CsSb or other) - Load-Lock, Airlock and Suitcase are maintained "particle free" - Initial QE of Cs_2 Te photocathodes at 258 nm is 5-15%, with > 10% typical - Efforts are underway to improve uniformity with better PVD source overlap #### **LCLS-II Photocathode Suitcases** - UHV transport suitcases were redesigned to improve photocathode visibility (for characterization) and intersystem transferability (for exchange with collaborators). This is different from SLAC's *original* suitcase. - Cs₂Te QE appears to be stable for months in a 'clean' suitcase - If a suitcase doesn't have a hydrogen dominated vacuum of $1x10^{-10}$ torr or better then the Cs_2Te QE decays over time (e.g. from 10% to 1% in ~6 months, then a very slow decay from 1% to 0.5%) - Minimum useful QE for LCLS-II operations is 0.5%. # **Current LCSL-II Photocathode** QE map of photocathode A008 Optical image of photocathode A008 - Photocathode A008 was produced using Cs and Te codeposition - Non-uniform QE may arise from non-uniform PVD source overlap (will be improved) - Photocathode A008 has 400 hrs of operation at low rep rate and no obvious QE decay has been observed - Intrinsic emittance measurement coming soon... ### FEL Output as a Function of Electron Beam Emittance Maximum wavelength for producing 100 uJ X-ray pulse energy Achieving this requires a factor of 4 reduction in slice emittance at the undulator (100 pC in 1 mm bunch) No single approach to achieve this → requires multiple parallel efforts ... starting with the photoinjector #### **Photocathode** current: $\epsilon_{ix} > 0.6 \,\mu m/mm$ target: $\varepsilon_{ix} < 0.3 \,\mu m/mm$ • Photocathodes are only a part ... but they are the most <u>cost effective</u> to improve • Photocathodes may achieve up to ½ of the desired emittance reduction overall # The Grand Photocathode Challenge - A large contribution to emittance comes from the photocathode - Problem is, very few new photocathodes have been discovered in the last 50 years - Intrinsic emittance $\varepsilon_{int} < 0.3 \ \mu m/mm \rightarrow \varepsilon_n < 0.1 \ \mu m$ at 100 pC, 1 mm, 100 MeV - QE sufficient to generate 100 pC, expected to be > 0.1% to minimize multiphoton effects - Visible or IR wavelength (500-700 nm) operation for spatial laser shaping Desired \rightarrow - Temporal response time < 3 ps for longitudinal phase space manipulation - Longitudinal energy spread < 10⁻³ - 1/e QE lifetime > the lesser of 60 Coulomb or 1 week of operation at 1 MHz - < 1 nA dark current when operated at 25 MV/m | | Cs ₂ Te | K ₂ CsSb | units | |----------------------------|--------------------|---------------------|-------| | Required Vacuum | < 10-9 | < 10 ⁻¹⁰ | Torr | | Laser Wavelength | 263 | 526 | nm | | Initial QE | ≥ 10 | ≤8 | % | | Intrinsic Emittance | 0.7-0.8 | 0.60 | μm/mm | | 1/e Lifetime | 17 | | days | | Service Life (10% to 0.5%) | 50 | | days | | Storage Life (suitcase) | ∞ | > 30 | days | # S20 Photocathode → Simultaneous 0.3 µm, 0.1% QE - "S20" photocathode = Cs_3Sb on $Na_2KSb \rightarrow best$ known candidate ??? - Demonstrated 0.3 μ m/mm intrinsic emittance (50 meV) at 690 nm and 300 K while maintaining a QE > 0.1% - K₂CsSb has also had success in the BNL SRF gun; many relevant details to discuss in this case though... Only credible strategy at present for reducing intrinsic emittance (in my opinion): - Use high QE semiconductor photocathodes - Reduce surface roughness and increase chemical uniformity by optimizing epitaxial growth methods - Operate as near the threshold for emission and at as low a temperature as multiphoton effects allow - Hope secondary electron yield doesn't generate too much dark current ### Momentatron: Transverse Momentum Measurement System $$\varepsilon_{\rm nx} = \left(\frac{1}{\rm m_0 c}\right) \sqrt{\langle {\rm x}^2 \rangle \langle {\rm p_x^2} \rangle - \langle {\rm xp_x} \rangle^2}$$ $$\epsilon_{\rm nx} = \sqrt{\langle {\rm x}^2 \rangle} \sqrt{\frac{2 \, V}{(2 {\rm g} + {\rm d})^2} \left(\frac{{\rm e}}{{\rm m}_0 {\rm c}^2}\right)} \sqrt{\langle {\rm r}^2 \rangle}$$ Intrinsic emittance $$\epsilon_{ix} \left[\frac{\mu m}{mm} \right] \equiv \frac{\epsilon_{nx}}{x_{rms}} \approx 0.063 \sqrt{V[kV]} r_{rms} [mm]$$ ### Cryogenic Momentatron being Commissioned at SLAC - Characterize the performance of LCLS-II photocathodes at 300K prior to operational use - Study general photocathode properties at temperatures between 300K and 4K - Provide data that is essential to facilitate future theoretical model developments e.g. the inclusion of phonons, carriers, physisorption of gas, etc. ### **US DOE ARDAP Accelerator Stewardship Effort** From Theory to Practical High-Brightness Photocathodes W. Andreas Schroeder (UIC) + SLAC #### **Objectives** - Use photoemission modeling based on *ab initio* band structure calculations to find an appropriate single-crystal material predicted to have $< 0.2 \, \mu \text{m/mm}$ intrinsic emittance at 300 K - Demonstrate $< 0.3 \mu m/mm$ intrinsic emittance and a QE > 0.1% using the operational test facility at the University of Illinois at Chicago (UIC) #### **Current and future work** - Experimental studies single-crystal (----) photocathodes - Ab initio theoretical and experimental studies of (----) photocathodes Ab initio Theory MTE($\hbar\omega$) QE($\hbar\omega$) # **US DOE BES Low Emittance Photoinjector Effort** Multi-lab/multi-university collaboration to determine the best photocathode to reach $0.3 \mu m/mm$ or less intrinsic emittance with a QE of 0.1% or better for use in the LCLS-II HE low emittance photoinjector #### **Materials Selection: All** 1. Identify candidates Conventional: Cs₃Sb More exotic: Cs₃Sb:Na₂KSb Novel: Na₂O others (----) - 7. Produce photocathodes Evaluating options now: - 1) SLAC using either an existing or a new system - 2) RMD commercial sealed capsule approach - 8. Transfer photocathodes amongst collaboration * UCLA and LBNL accept INFN style plugs - 9. Measure dark current generation using existing systems that are capable of reaching > 20 MV/m - 10. Assess the importance of physical and/or chemical roughness #### DC Studies: SLAC, ASU and Cornell - 2. Measure the temperature and wavelength dependence of QE and intrinsic emittance using existing systems (Cornell and ASU) that are capable of reaching a few MV/m Cross check for consistency and reproducibility - 3. Measure temporal response - 4. Assess the importance of multi-photon effects (high laser power required for low QE) - 5. SLAC DC high gradient field emission tests 15 MV/m achievable w/ LEEM 30 MV/m (300V over 10µm) w/ STM or nanoprobe - 6. ASU is also looking into a modified INFN plug with removable tip to increase substrate options and to improve compatibility w/ surface science systems ### **Summary** The LCLS-II photoinjector has been successfully commissioned 2018-2020: 1 MeV Measured 1 μm/mm of intrinsic emittance July–August 2022: 100 MeV Measured ~0.5 μm emittance w/ 50 pC, already close to design New collimator blocks 95% of dark current generated by the VHF gun - Three Cs₂Te photocathodes have been used during photoinjector commissioning The 1st one operated for 500 hours and damage was observed near the center The 2nd one operated for 200 hours with similar but less pronounced results The 3rd one has operated for 400 hrs and there has been no obvious damage observed so far - Ion back-bombardment did not cause the damage observed in the first two LCLS-II photocathodes. Other options: e-beam or laser? - The LCLS-II deposition system and transport suitcases have been successfully commissioned - A cryogenic momentatron system will be commissioned at SLAC over the next year - SLAC is engaged in BES & ARDAP funded collaborations aiming for significant reductions in intrinsic emittance. Goal is to achieve $\leq 0.3 \ \mu m/mm$ with $\geq 0.1\%$ QE #### Thank you very much for your attention!