Experience on "polarized" photocathodes

European Workshop on Photocathodes for Particle Accelerator Applications (EWPAA 2022)

September, 20, 2022

Presented by Kurt Aulenbacher

Supported by German Science Ministry, BMBF, through projects 05K19UMA (BETH) and 05K19UMB (CSBB)

Outline

- "Polarized Photocathodes" State of the art & development paths
- NEA-cathodes: technical limitations
- NEA-cathodes: physics limitations

Electron affinity: NEA vs. PEA cathodes

• Electrons in S-states - i.e. high spin polarization - can be generated at the bottom of the conduction band !

The electron affinity is defined as : $\xi = E_{vac} - E_{CB,min}$

O PRISMA

3

Band structure for high polarization

High spin orbit splitting is required \rightarrow GaAs (cubic, fcc)

Lower symmetry ("tetragonal") \rightarrow GaAs based strained layer or superlattice (SL)

- SL causes shift of Band gap energy depending on composition wrt GaAs and removal of degeneracy
- \rightarrow "Band structure engineering"

4

GaAs/GaAsP"Strained Superlattice" :

(T. Maruyama et al. Appl. Physics. Lett. 85,13 (2004) 2640)

SL causes shift of Band gap energy wrt GaAs and removal of degeneracy

: Gradient doping

- Matched to wavelength of frequency doubled telecommunication laser system.

GaAs	5 nm	$\rm p=5\times10^{19}\rm cm^{-3}$
GaAs/GaAsP SL	(3.8/2.8 nm) ×14	p=5 $ imes$ 10 17 cm ⁻³
GaAsP _{0.35}	2750 nm	p=5 $ imes$ 10 18 cm $^{-3}$
Graded GaAsP _x (x = $0 \sim 0.35$)	5000 nm	p=5 $ imes$ 10 18 cm $^{-3}$
GaAs buffer	200 nm	p=2 $ imes$ 10 18 cm ⁻³
p-GaAs	substrate (p>10) ¹⁸ cm ⁻³)

SLAC/SVT – Superlattice

(T. Maruyama et al. Appl. Physics. Lett. 85,13 (2004) 2640)

PRISMA

"Resonant" Strained Superlattice-cathode

12 100 - QE for nonDBR **(%)** 10⊦ (a) **QE for DBR** ESP for nonDBR 80 Quantum Efficiency ESP for DBR 8 60 (%) ESP 40 20 2 0 700 720 740 760 780 800 Wavelength (nm)

JLAB/SVT – Superlattice

W. Liu et al. Appl. Physics. Lett. 109,252104 (2016) doi: 10.1063/1.4972180

Absorption enhanced by DBR-Reflector causing active region to be a cavity with enhanced absorption at resonance → increased QE. 6% @ 770nm (>30mA/Watt) @ >80% Pol.

JGU

- 1. Due to low doping in small active region: large mean free path $\lambda \approx d_{active}$ \rightarrow fast t<<5ps
- 2. almost 100% "sink" at surface
 - \rightarrow no tail
- 3. Huge "gradient" doping at surface
 - → "high" current density and/or fluence possible in spite of "photovoltage" But "high" means Amps/cm² average current! (nC/cm² fluence in short pulses < 10ns)</p>
- 4. (Quite) low transverse energy due to NEA-near band gap operation, typically

 $\varepsilon_{norm} < 0.3 \; \mu m/mm$

I. Bazarov et al. J. Appl. Phys. 103, 054901 (2008); https://doi.org/10.1063/1.2838209

PRISMA

7

Accelerators for polarized beam – nuclear & particle physics

Project	Typcial Av. Current/mA	Bunch rep. Frequency/MHz	status
MAMI	0.02	2449	In operation
CEBAF	0.2	1500	In operation
MESA (ERL)	1	1300	upcoming
LHeC, (ERL)	20	40 (d.f.=0.05)	Future
CERL, and others			

Note that the sustained operation of the upcoming and future projects will require extraction of charges in the order of 10-100 Kilocoulomb

Future projects may be challenged by **technical limits** and **physics limitations**

arxiv_2201.07895

Technical limits: research

Changes in surface layer will

- Increase electron affinity towards PEA
- Reduce emission probability of electrons
- \rightarrow Low lifetime τ

Changes may be induced by:

- 1. Chemical reactions
- 2. Sputtering by ions ("ion backbombardment")
- 3. Thermal decomposition

Necessary conditions for "reasonable" lifetime:

- Vacuum level 10⁻¹¹ mbar or below
- Beam losses in source region only of nA scale
- Cathode Temperature below ~50 degree Celsius

Performance measure in real life is the "charge lifetime" (charge that can be extracted until QE has dropped by 1/e)

Ion backbombardment in DC-guns

causes back traveling ions

PhD thesis Kurt Aulenbacher Mainz 1994, see also SLAC pub 432 p 1-13

Superposition of several effects

If ion backbombardment is the ONLY cause of lifetime reduction, then $au^{-1} \propto pI$.

- , i.e lifetime is reduced in proportion to the inverse of beam current times pressure.
- i.e the product of beam current times lifetime is constant (Charge lifetime)
- This requires that pressure and cathode temperature do not depend on the current
- Real life: Strongly interrelated many parameter problem

PRISMA

Besides the contributions already discussed there is **Ion backbombardment**. Example from MAMI-beam-times

Charge lifetime: $C_{\tau}=I^*\tau_{obs}=Q=const!$

Here ~200C !

Fluence lifetime: F= $C_{\tau} / A_{beam} \sim 10^5 \text{ C/cm}^2$

Note: ε_{norm} ~100nm in these experiments (150µm Laser spot rms) \rightarrow can Charge lifetime be increased to >>1000C at ε ~1µm? Careful experiments have been done at JLAB: achieved >1000C with **green light** illumination at about 9mA current Open question: other contributions become non negligible (Heating, non-linear transmission loss?)

Note that (non-linear space charge may create halo...)

Exploring new paths

Modifying the surface layer

Changing the composition at the surface may "stabilize" or protect it. Examples Cs:F:Li (TU-Darmstadt & JLAB)and Cs:O:Sb (Cornell) and Cs₂Te (Cornell)

TABLE I. Lifetimes at 780 nm estimated by comparing initial QE and final QE after the QE degradation measurement in Fig. 5.

Activation method	Initial QE at 780 nm	Final QE at 780 nm	Lifetime estimate (h)	Improvement factor
Cs-O ₂	3.3×10^{-2}	1.4×10^{-3}	15	$\times 1$
$Cs-O_2 + Cs-Sb$	9.5×10^{-3}	2.9×10^{-3}	41	×2.7
$Cs-Sb + Cs-O_2$	3.8×10^{-3}	1.1×10^{-3}	70	×4.6
Cs-Sb-O ₂	1.0×10^{-2}	7.0×10^{-3}	104	×6.8

Jai Kwan Bae, Alice Galdi, Luca Cultrera, Frank Ikponmwen, Jared Maxson, and Ivan Bazarov

, "Improved lifetime of a high spin polarization superlattice photocathode", Journal of Applied Physics 127, 124901 (2020) https://doi.org/10.1063/1.5139674

Though not useful for accelerator yet, these studies indicate that considerable improvements may be possible.

Cathode temperature control

- Within the "BETH" project we investigate a new appoach. The cathode holder ("Puck") is pressed against an thermally conductive insulator (Boron nitride)
- This procedure is done "Outside", the insulator is then moved into the electrode and stays there
- .A well defined small pressure can be used to provide electrical contact with the electrode

Heating Experiment

- Heating power of 1.5W at 532 nm laser wavelength
- ΔT between "ground" (manipulator) and puck is <15 degree
- The Temperature of the manipulator can be controlled via cooling clamps
- Next step: Use cooling clamps to control the temperature (keep constant or even cool, if helpful)

(5)

Promising, but a long way to go. Next: HV-test.

The brightness limiter: Surface Photovoltage

Near band-gap excitation may provoque surface photovoltage at surface
→ leads to reduced QE because of modified NEA-state

Small "ThErmalized" source At MAINZ (STEAM)- long pulse SPV

Operation with up to 150keVbeam and up to 10mA (400µs pulses)-Surface photovoltage in NEA GaAs at 10mA leads to Q.E. dependend saturation current density in DC-operation

(400mus long pulses, 800nm excitation wavelength) S Friederich-PhD thesis Mainz, 2019

Commissioning

of STEAM at MESA has started.

 \rightarrow Commissioning of injector in 22/23

 \rightarrow Beam operations for P2

(150muA average current, P>0.85) envisaged for end 2024.

Uni Mainz : Surface Photovoltage (shortpulse)

R = I(30ps)/I(0ps)10⁰ 10⁻¹ Normalized signal 10⁻² 10-3 10-4 -20 20 40 60 80 0 Time [ps] QE [%] 3.99 6.39 6.15 3.21 1.01 .03 26 20 76 20 × × 10-6 10-5 10-10-3 10-10 10-10 10 10-5 10 5 10 10 5

PhD thesis Nahid Scahill -self modulation of picosecond pulses at very low QE? Fits with models based on SPV (inspired by Mulhollan et al.) Or PEA+thermionic emission

"Polarized" Photocathode acquisition problem

SLAC/SVT – Superlattice

GaAs	5 nm	$\rm p=5\times10^{19}\rm cm^{-3}$
GaAs/GaAsP SL	(3.8/2.8 nm) ×14	p=5 $ imes$ 10 17 cm ⁻³
GaAsP _{0.35}	2750 nm	p=5 $ imes$ 10 18 cm $^{-3}$
Graded GaAsP _x (x = $0 \sim 0.35$)	5000 nm	p=5 $\times10^{18}\text{cm}^{\text{-3}}$
GaAs buffer	200 nm	p=2 $\times10^{18}\text{cm}^{\text{-3}}$
p-GaAs substrate (p>10 ¹⁸ cm ⁻³)		

- Commercial supplier no longer available
- Due to absence of large-scale polarized accelerator activity in Europe liited interest in setting up infrastructure
- Investigating possible new suppliers and
- Help by government "applied" physics institutes ("Fraunhofer)?

PRISMA

Conclusion

- Upcoming (Planned/discussed) electron machines in Europe for nuclear/particle (N/P)-physics will need high average current from (probably) polarized photosources
 - \rightarrow large interest in progress but limited research activity so far
- "University scale machines" exist at Darmstadt and Mainz and there is high demand for improving conditions, in particular operational lifetime of spin polarized sources
- Research in this direction is feasible with university means and will also be used whereever such spin polarized beams are needed.

Thank you

Longitudinal Halo Study at Mainz

GaAs/GaAsP"Strained Superlattice" :

(T. Maruyama et al. Appl. Physics. Lett. 85,13 (2004) 2640)

Study of pulse response

SLAC/SVT – Superlattice

5 nm	p=5 $ imes$ 10 19 cm $^{-3}$
(3.8/2.8 nm) ×14	p=5 $ imes$ 10 17 cm ⁻³
2750 nm	p=5 $ imes$ 10 18 cm $^{-3}$
5000 nm	$p=5\times10^{18}cm^{-3}$
200 nm	$p=2 \times 10^{18} \text{ cm}^{-3}$
	5 nm (3.8/2.8 nm) ×14 2750 nm 5000 nm

Peak width dominated by experimental resolution As expected, Intensity drops into noise floor after a few picoseconds. Parasitic peaks due to double reflexes? (PhD Thesis Nahid Scahill)

PRISMA

JGU