

Current status of the first-row CKM unitarity from semileptonic decay

processes

Chien-Yeah Seng

Helmholtz-Institut für Strahlen- und Kernphysik and

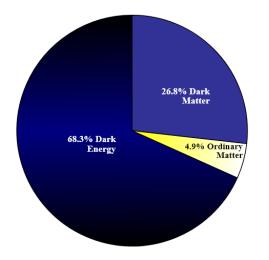
Bethe Center for Theoretical Physics, Universität Bonn

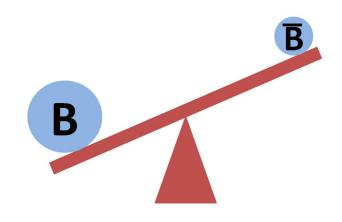
cseng@hiskp.uni-bonn.de

LNF General Seminar, Istituto Nazionale di Fisica Nucleare (INFN), Italy 9 February, 2022

BSM Physics at the Precision Frontier

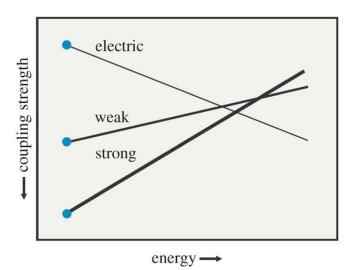
Many unresolved problems call for physics beyond the Standard Model (BSM)



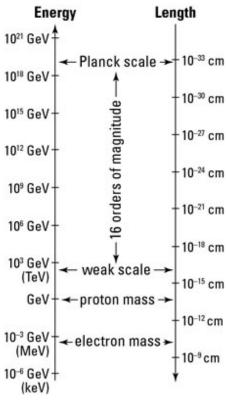


Dark energy, dark matter

Matter-antimatter asymmetry



Unification of forces



Hierarchy problem

BSM Physics at the Precision Frontier

Most of the present anomalies in particle physics arise from **precision experiments**!

• Muon g-2: ~4.2σ discrepancy

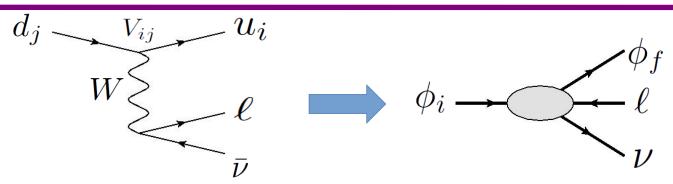
$$\Delta a_{\mu} = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 251(41)_{\text{exp}}(43)_{\text{th}} \times 10^{-11}$$

• B-decay anomalies: ~3.1σ discrepancy

$$R_K \equiv \frac{\mathcal{B}(\bar{B} \to K \mu^+ \mu^-)}{\mathcal{B}(\bar{B} \to K e^+ e^-)} = 0.846^{+0.042}_{-0.039} (\text{stat})^{+0.013}_{-0.012} (\text{syst})$$

Muon g-2 + B-decay anomalies "Flavor anomalies"

...and there is a THIRD TYPE!



Beta decays had been crucial in the shaping of Standard Model (SM)

1930: Neutrino postulation by Pauli

1956: Wu's experiment confirmed **P-violation** in weak interaction (1957 Nobel Prize by Lee and Yang)

1957: Feynman, Gell-Mann, Sudarshan and Marshak: V-A structure in the charged weak interaction

1963: **2*2 unitary matrix** by Cabibbo to mix the $\Delta S=0$ and $\Delta S=1$ charged weak current

1973: Kobayashi and Maskawa extended the matrix to 3*3 (the CKM matrix), introduced the 3rd generation quarks (Nobel Prize 2008)

$$\psi_{d,f} = \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{f} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{m}$$

Beta decays place one of the most stringent tests of SM through precision measurements of the first-row CKM matrix elements V_{ud} and V_{us}

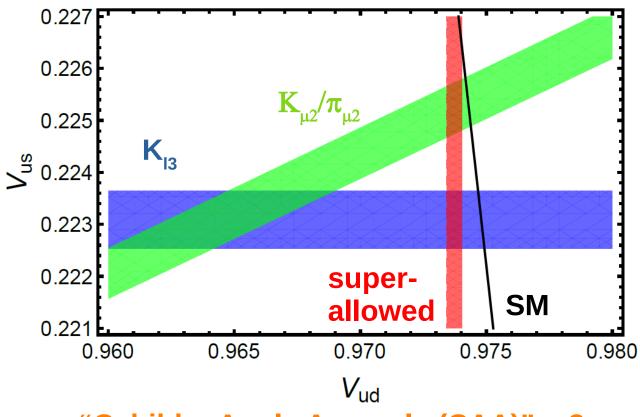
	$ V_{ud} $
Superallowed nuclear decays $(0^+ \to 0^+)$	0.97373(31)
Free n decay	0.97377(90)
Mirror nuclei decays	0.9739(10)
Pion semileptonic decay (π_{e3})	0.9740(28)

	$ V_{us} $
Kaon semileptonic decays $(K_{\ell 3})$	0.22309(56)
Tau decays	0.2221(13)
Hyperon decays	0.2250(27)

	$ V_{us}/V_{ud} $
K/π leptonic decays $(K_{\mu 2}/\pi_{\mu 2})$	0.23131(51)
K/π semileptonic decays $(K_{\ell 3}/\pi_{e3})$	0.22908(87)

Several anomalies are recently observed in the first-row CKM matrix elements!

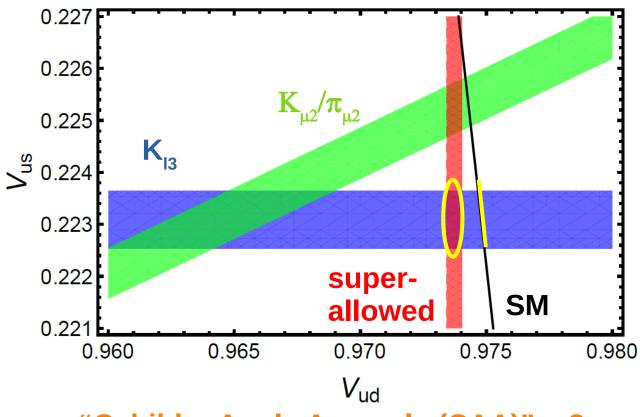
SM prediction:
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$



"Cabibbo Angle Anomaly (CAA)" $\sim 3\sigma$

Several anomalies are recently observed in the first-row CKM matrix elements!

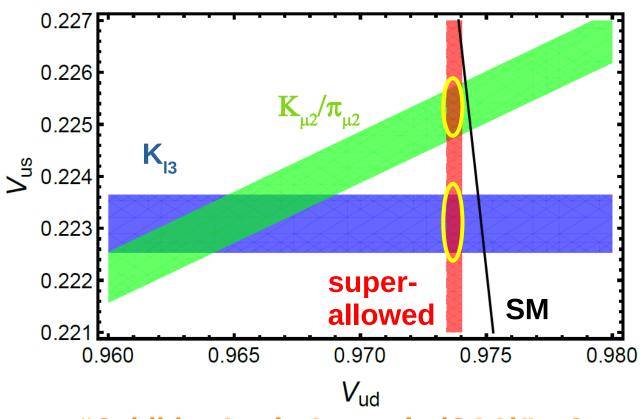
SM prediction:
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$



"Cabibbo Angle Anomaly (CAA)" $\sim 3\sigma$

Several anomalies are recently observed in the first-row CKM matrix elements!

SM prediction:
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$



"Cabibbo Angle Anomaly (CAA)" $\sim 3\sigma$

A concrete example: First-row CKM unitarity with $|V_{ud}|$ from 0⁺ beta decay and $|V_{us}|$ from K_{l3} decay

$$|V_{ud}|_{0+}^{2} + |V_{us}|_{K_{\ell 3}}^{2} + |V_{ub}|^{2} - 1 = -0.0021(7)$$

SOURCES OF UNCERTAINTY:

$ V_{ud} _{0+}^2 + V_{us} _{K_{\ell 3}}^2 - 1$	-2.1×10^{-3}
$\delta V_{ud} _{0+}^2$, exp	2.1×10^{-4}
$\delta V_{ud} _{0+}^2$, RC	1.8×10^{-4}
$\delta V_{ud} _{0+}^2, \mathbf{NS}$	5.3×10^{-4}
$\delta V_{us} _{K_{\ell 3}}^2, \exp+$ th	1.8×10^{-4}
$\delta V_{us} _{K_{\ell 3}}^2$, lat	1.7×10^{-4}
Total uncertainty	6.5×10^{-4}
Significance level	3.2σ

A concrete example: First-row CKM unitarity with $|V_{ud}|$ from 0⁺ beta decay and $|V_{us}|$ from K_{l3} decay

$$|V_{ud}|_{0+}^{2} + |V_{us}|_{K_{\ell 3}}^{2} + |V_{ub}|^{2} - 1 = -0.0021(7)$$

SOURCES OF UNCERTAINTY:

$$\delta |V_{ud}|_{0^+}^2$$
, exp:

Experimental uncertainties in the half-lives of the superallowed beta decays

	$ V_{ud} _{0^+}^2 + V_{us} _{K_{\ell 3}}^2 - 1$	-2.1×10^{-3}
•	$\delta V_{ud} _{0+}^2$, exp	2.1×10^{-4}
	$\delta V_{ud} _{0+}^2$, RC	1.8×10^{-4}
	$\delta V_{ud} _{0^+}^2, { m NS}$	5.3×10^{-4}
	$\delta V_{us} _{K_{\ell 3}}^2, \exp+ h$	1.8×10^{-4}
	$\delta V_{us} _{K_{\ell 3}}^2, { m lat}$	1.7×10^{-4}
	Total uncertainty	6.5×10^{-4}
	Significance level	3.2σ

A concrete example: First-row CKM unitarity with $|V_{ud}|$ from 0⁺ beta decay and $|V_{us}|$ from K_{l3} decay

$$|V_{ud}|_{0+}^{2} + |V_{us}|_{K_{\ell 3}}^{2} + |V_{ub}|^{2} - 1 = -0.0021(7)$$

SOURCES OF UNCERTAINTY:

$$\delta |V_{ud}|_{0^+}^2$$
, RC:

Theory uncertainties in the single-nucleon radiative corrections (RC)

$ V_{ud} _{0+}^2 + V_{us} _{K_{\ell 3}}^2 - 1$	-2.1×10^{-3}
$\delta V_{ud} _{0+}^2$, exp	2.1×10^{-4}
$\delta V_{ud} _{0+}^2, \mathbf{RC}$	1.8×10^{-4}
$\delta V_{ud} _{0+}^2, \mathbf{NS}$	5.3×10^{-4}
$\delta V_{us} _{K_{\ell 3}}^2, \exp+$ th	1.8×10^{-4}
$\delta V_{us} _{K_{\ell 3}}^2$, lat	1.7×10^{-4}
Total uncertainty	6.5×10^{-4}
Significance level	3.2σ

A concrete example: First-row CKM unitarity with $|V_{ud}|$ from 0⁺ beta decay and $|V_{us}|$ from K_{l3} decay

$$|V_{ud}|_{0+}^{2} + |V_{us}|_{K_{\ell 3}}^{2} + |V_{ub}|^{2} - 1 = -0.0021(7)$$

SOURCES OF UNCERTAINTY:

$$\delta |V_{ud}|_{0+}^2$$
, **NS:**

Theory uncertainties in the nuclear-structure (NS) corrections in superallowed beta decays

$ V_{ud} _{0+}^2 + V_{us} _{K_{\ell 3}}^2 - 1$	-2.1×10^{-3}
$\delta V_{ud} _{0+}^2$, exp	2.1×10^{-4}
$\delta V_{ud} _{0+}^2, \mathbf{RC}$	1.8×10^{-4}
$\delta V_{ud} _{0+}^2, \mathbf{NS}$	5.3×10^{-4}
$\delta V_{us} _{K_{\ell 3}}^2, \exp+$ th	1.8×10^{-4}
$\delta V_{us} _{K_{\ell 3}}^2$, lat	1.7×10^{-4}
Total uncertainty	6.5×10^{-4}
Significance level	3.2σ

A concrete example: First-row CKM unitarity with $|V_{ud}|$ from 0⁺ beta decay and $|V_{us}|$ from K_{l3} decay

$$|V_{ud}|_{0+}^{2} + |V_{us}|_{K_{\ell 3}}^{2} + |V_{ub}|^{2} - 1 = -0.0021(7)$$

SOURCES OF UNCERTAINTY:

$$\delta |V_{us}|_{K_{\ell 3}}^2$$
, exp+th:

Combined experimental + theory (non-lattice) uncertainties in the K_{13} decay rate

$ V_{ud} _{0+}^2 + V_{us} _{K_{\ell 3}}^2 - 1$	-2.1×10^{-3}
$\delta V_{ud} _{0+}^2$, exp	2.1×10^{-4}
$\delta V_{ud} _{0+}^2$, RC	1.8×10^{-4}
$\delta V_{ud} _{0+}^2, \mathbf{NS}$	5.3×10^{-4}
$\delta V_{us} _{K_{\ell 3}}^2$, exp+th	1.8×10^{-4}
$\delta V_{us} _{K_{\ell 3}}^2$, lat	1.7×10^{-4}
Total uncertainty	6.5×10^{-4}
Significance level	3.2σ

A concrete example: First-row CKM unitarity with $|V_{ud}|$ from 0⁺ beta decay and $|V_{us}|$ from K_{l3} decay

$$|V_{ud}|_{0+}^{2} + |V_{us}|_{K_{\ell 3}}^{2} + |V_{ub}|^{2} - 1 = -0.0021(7)$$

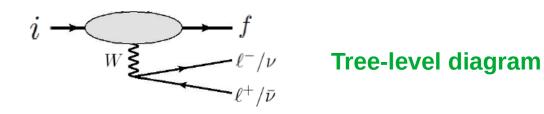
SOURCES OF UNCERTAINTY:

$$\delta |V_{us}|_{K_{\ell 3}}^2$$
, lat:

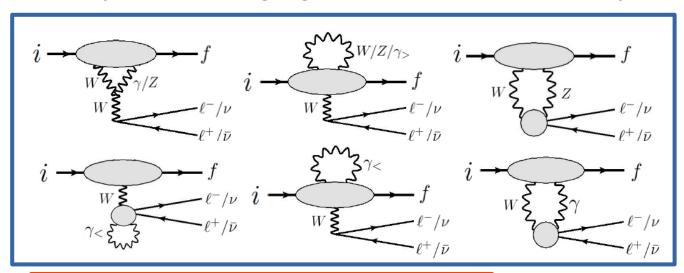
Theory uncertainties in the lattice QCD calculation of the $K\pi$ form factor at t=0

$ V_{ud} _{0+}^2 + V_{us} _{K_{\ell 3}}^2 - 1$	-2.1×10^{-3}
$\delta V_{ud} _{0+}^2$, exp	2.1×10^{-4}
$\delta V_{ud} _{0+}^2, \mathbf{RC}$	1.8×10^{-4}
$\delta V_{ud} _{0+}^2, \mathbf{NS}$	5.3×10^{-4}
$\delta V_{us} _{K_{\ell 3}}^2, \exp+$ th	1.8×10^{-4}
$\delta V_{us} _{K_{\ell 3}}^2$, lat	1.7×10^{-4}
Total uncertainty	6.5×10^{-4}
Significance level	3.2σ

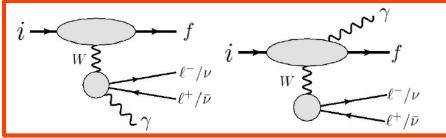
Inputs in nucleon/ nuclear sector (V_{ud})



Radiative corrections: Higher-order SM corrections that involve emission + reabsorption of virtual gauge bosons or emission of real photons.

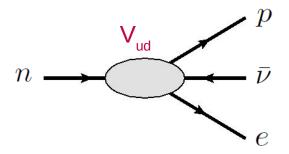


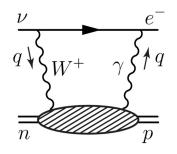
Emission + reabsorption of virtual gauge bosons

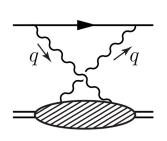


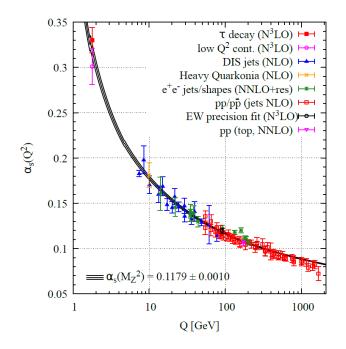
Emission of a real photon (bremsstrahlung)

Primary source of uncertainty: the "single-nucleon axial γW-box diagram"









Main issue:Strong interactions governed by Quantum Chromodynamics (QCD) become non-perturbative at the hadronic scale (Q²~1 GeV²)

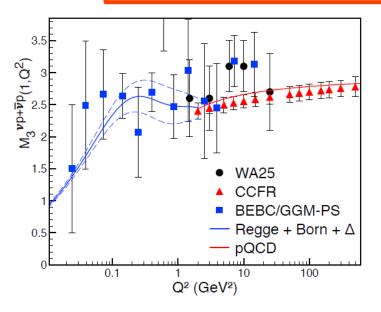
Major theory challenge in the past 4 decades *Sirlin, 1978 Rev.Mod.Phys*

Pre-2018 treatment: Divide the loop integral into different regions of Q²:

- Large-Q²: perturbative QCD
- Small-Q²: elastic form factors
- Intermediate Q²: Interpolating function

Year 2018: Dispersion relation (DR) treatment --- relate the loop integral to experimentally-measurable structure functions CYS, Gorchtein, Patel and Ramsey-Musolf, 2018 PRL

$$\Box_{\gamma W}^{V} = \frac{\alpha_{em}}{\pi \mathring{g}_{V}} \int_{0}^{\infty} \frac{dQ^{2}}{Q^{2}} \frac{M_{W}^{2}}{M_{W}^{2} + Q^{2}} \int_{0}^{1} dx \frac{1 + 2r}{(1 + r)^{2}} F_{3}^{(0)}(x, Q^{2})$$



Data input: Parity-odd structure function F₃ from neutrino-nucleus scattering

New treatment led to a significant change of |Vud|

|Vud|:
$$0.97420(21) \rightarrow 0.97370(14)$$

Pre-2018 2018

unveiling the tension in the top-row CKM unitarity

Confirmation by independent studies:

Czarnecki, Marciano and Sirlin, 2019 PRD CYS, Feng, Gorchtein and Jin, 2020 PRD Hayen, 2021 PRD Shiells, Blunden and Melnitchouk, 2021 PRD

Further application of DR: Radiative corrections to the **Gamow-Teller (GT)** matrix element

(forward limit):

Free neutron decay (forward limit):
$$\langle p|\,J_W^\mu\,|n\rangle = \bar{u}_p\gamma^\mu\, {\rm Fermi}_{(g_V+\,g_A\gamma_5)}\, u_n$$

The axial coupling constant g can be probed in correlation coefficients of the differential decay rate

$$d\Gamma \propto 1 + 0 \frac{\vec{p}_e \cdot \vec{p}_\nu}{E_e E_\nu} + \hat{e}_s \cdot \left[A \frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_\nu}{E_\nu} \right]$$

The bare axial coupling constant was calculated to percent level with lattice QCD (sub-percent in near future). Direct comparison with experimental measurement serves as a strong probe of BSM physics

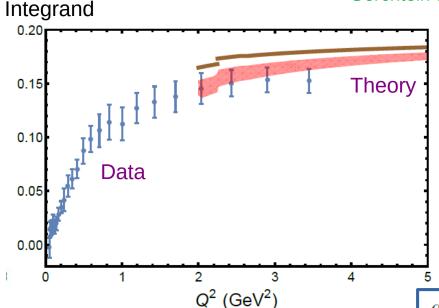
To make the comparison rigorous, one needs to understand precisely the full SM RC to g_{Δ} .

Pioneering work (non-DR): Hayen, 2021 PRD

DR formalism:

$$\Box^{A}_{\gamma W} \ = \ -\frac{2\alpha_{em}}{\pi \mathring{g}_{A}} \int_{0}^{\infty} \frac{dQ^{2}}{Q^{2}} \frac{M_{W}^{2}}{M_{W}^{2} + Q^{2}} \int_{0}^{1} \frac{dx}{(1+r)^{2}} \left[\frac{5+4r}{3} g_{1}^{(0)}(x,Q^{2}) - \frac{4M^{2}x^{2}}{Q^{2}} g_{2}^{(0)}(x,Q^{2}) \right]$$

Gorchtein and CYS, JHEP 10 (2021) 053



Data input: Spin-dependent structure functions g_1 and g_2 obtained from deep inelastic scattering (DIS) experiments

CLAS Collaboration (Jefferson Lab), EG1b experiment; 2015 PRC and 2017 PRC

Excellent theory precision achieved:

$$\frac{g_A}{g_V} = \left(\frac{g_A}{g_V}\right)_{\text{bare}} \left(1 + 0.13(11)_V(6)_A \times 10^{-3}\right)$$

Major limiting factor of the DR treatment: low quality of the neutrino data in the most interesting region: $Q^2 \sim 1 \text{GeV}^2$

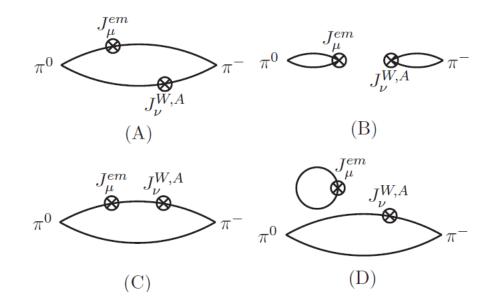
Ongoing program: Calculate the box diagram directly with lattice QCD

Year 2020: First realistic lattice QCD calculation of the simpler pion axial γW-box diagram

Feng, Gorchtein, Jin, Ma and CYS, 2020 PRL

Consequences:

- Significant reduction of the theory uncertainty in **pion** semileptonic decay (π_{e3})
- Indirect implications on the free-neutron axial γW-box diagram

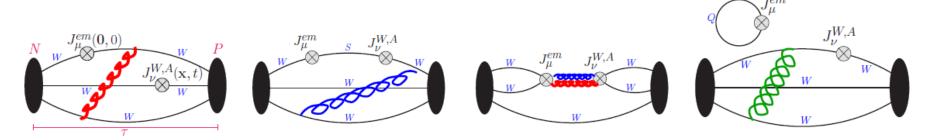


CYS, Feng, Gorchtein and Jin, 2020 PRD

Major limiting factor of the DR treatment: low quality of the neutrino data in the most interesting region: $Q^2 \sim 1 \text{GeV}^2$

Ongoing program: Calculate the box diagram directly with lattice QCD

Neutron axial γ W-box diagram is more complicated, but on the way.

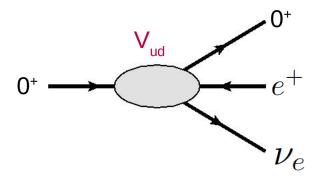


(R. Gupta, Rare Processes and Precision Frontier Townhall Meeting, 2020)

Possible alternative approach using Feynman-Hellmann theorem (FHT)

CYS and Meißner, 2019 PRL

Superallowed $0^+ \rightarrow 0^+$ nuclear beta decays provides the best measurement of V_{ud}



Advantages:

- 1. Conserved vector current (CVC) at tree level
- 2. Large number of measured transitions, with 15 among them whose lifetime precision is 0.23% or better. Huge gain in statistics.

$T_Z = -1$
$^{10}\mathrm{C} \rightarrow ^{10}\mathrm{B}$
$^{14}\mathrm{O}{ ightarrow}^{14}\mathrm{N}$
$^{22}\mathrm{Mg}{\rightarrow}^{22}\mathrm{Na}$
$^{26}\mathrm{Si} \rightarrow ^{26}\mathrm{Al}$
$^{34}\mathrm{Ar}{ ightarrow}^{34}\mathrm{Cl}$
$^{38}\mathrm{Ca}{ ightarrow}^{38}\mathrm{K}$
$T_Z = 0$
26m Al \rightarrow ²⁶ Mg
$^{34}\text{Cl} \rightarrow ^{34}\text{S}$
$^{38m}\mathrm{K}{ ightarrow}^{38}\mathrm{Ar}$
$^{42}\mathrm{Sc} \rightarrow ^{42}\mathrm{Ca}$
$^{46}V\rightarrow^{46}Ti$
$^{50}\mathrm{Mn}{ ightarrow}^{50}\mathrm{Cr}$
$^{54}\text{Co}{\rightarrow}^{54}\text{Fe}$
$^{62}\mathrm{Ga}{ ightarrow}^{62}\mathrm{Zn}$
$^{74}\mathrm{Rb}{ ightarrow}^{74}\mathrm{Kr}$

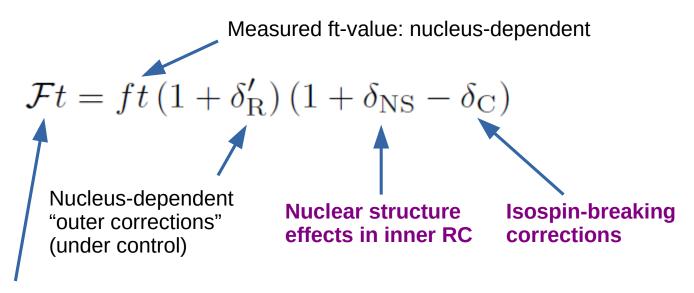
Superallowed $0^+ \rightarrow 0^+$ nuclear beta decays provides the best measurement of V_{ud}

Master formula:

$$|V_{ud}|^2 = \frac{2984.43 \, s}{\mathcal{F}t \left(1 + \Delta_R^V\right)}.$$

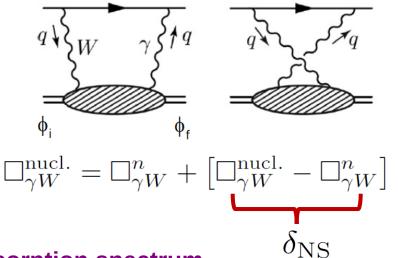
Single-nucleon RC

Corrected ft (half-life*statistical function)-value:



Corrected ft-value: nucleus-independent

$\delta_{\rm NS}$ nuclear modifications of the free-nucleon inner RC



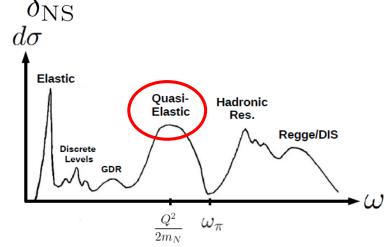
N

LARGEST source of uncertainty in V_{ud}!

 The low-energy absorption spectrum is distorted by nuclear corrections

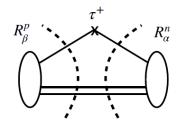
• An important contribution from the quasielastic nucleons was not properly accounted for in previous nuclear-model calculations, which results in the large uncertainty in $\delta_{\rm NS}$.

Ab-initio nuclear theory calculations of δ_{NS} urgently needed!



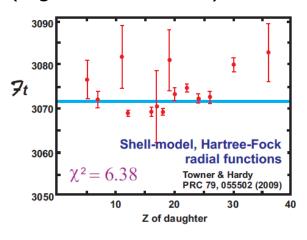
CYS, Gorchtein and Ramsey-Musolf, 2019 PRD; Gorchtein, 2019 PRL

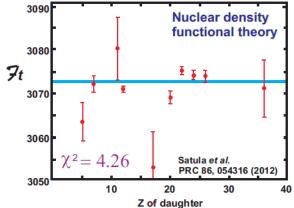
δ_c : isospin-breaking (ISB) corrections to nuclear wavefunctions

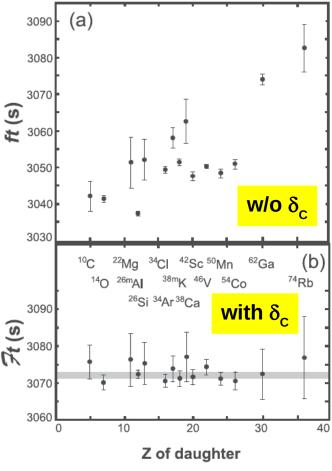


Essential to **align the Ft-values** of different superallowed transitions.

It turns out that such alignment is only achieved within **some specific choices of nuclear models** (e.g. Woods Saxon), but not the others.





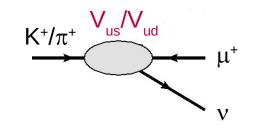


Hardy and Towner, 2020 PRC

Inputs in Kaon/pion sector (V_{us} and V_{us}/V_{ud})

Kaon/pion leptonic decay $(K_{\mu 2}/\pi_{\mu 2})$

$$\frac{|V_{us}|f_{K^+}}{|V_{ud}|f_{\pi^+}} = \left[\frac{\Gamma_{K_{\mu 2}} M_{\pi^+}}{\Gamma_{\pi_{\mu 2}} M_{K^+}}\right]^{1/2} \frac{1 - m_{\mu}^2 / M_{\pi^+}^2}{1 - m_{\mu}^2 / M_{K^+}^2} \left(1 - \delta_{\rm EM}/2\right)$$



"axial ratio" R Neufeld, 2011 PLB

Marciano, 2004 PRL; Cirigliano and Neufeld. 2011 PLB

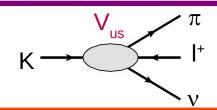
Lattice QCD inputs: K^+/π^+ decay constants

Electromagnetic RC $\delta_{\rm EM}=\delta_{\rm EM}^K-\delta_{\rm EM}^\pi=-0.0069(17)$ Knecht et al., 2000 EPJC Cirigliano and Neufeld, 2011 PLB

Advantage: LECs cancel in the ratio

Direct lattice QCD calculation of the EMRC+isospin breaking correction (contained in the physical K^+/π^+ decay constants) consistent with ChPT result, with slightly lower uncertainty *Giusti et al, 2018 PRL*

Total:
$$|V_{us}/V_{ud}| = 0.23131(41)_{lat}(24)_{exp}(19)_{RC}$$



Master formula:

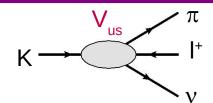
$$\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\text{EW}} |f_+^{K^0 \pi^-}(0)|^2 I_{K\ell}^{(0)} \left(1 + \delta_{\text{EM}}^{K\ell} + \delta_{\text{SU}(2)}^{K\pi}\right)$$

Measurements of **branching ratio** exist in all **six channels**:

 K_{e3}^L, K_{u3}^L : PLB632,43(2006), PRD70,092006(2004), ...

New!

 K_{e3}^+, K_{u3}^+ : JHEP02,098(2008), PRD6,1254(1972), ...



Master formula:

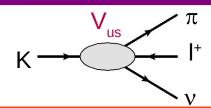
$$\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\text{EW}} |f_+^{K^0 \pi^-}(0)|^2 I_{K\ell}^{(0)} \left(1 + \delta_{\text{EM}}^{K\ell} + \delta_{\text{SU}(2)}^{K\pi}\right)$$

 C_{κ} : Known isospin factor

 S_{FW} : Short-distance electroweak RCs

$$S_{\rm EW} = 1.0232(3)$$

Marciano and Sirlin, 1993 PRL



Master formula:

$$\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\text{EW}} f_{+}^{K^0 \pi^-}(0) |^2 I_{K\ell}^{(0)} \left(1 + \delta_{\text{EM}}^{K\ell} + \delta_{\text{SU}(2)}^{K\pi} \right)$$

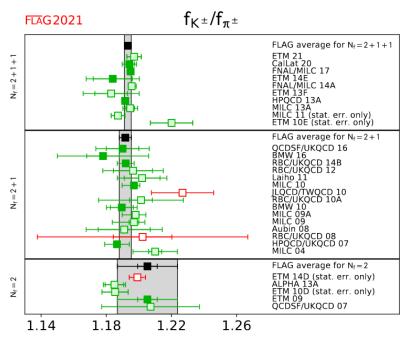
Kπ form factor at t=0:
$$\langle \pi^-(p') | J_W^\mu | K^0(p) \rangle = f_+^{K^0\pi^-}(t) (p+p')^\mu + f_-^{K^0\pi^-}(t) (p-p')^\mu$$

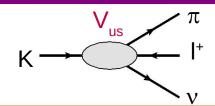
Lattice QCD inputs:

$$N_f = 2 + 1 + 1$$
 : $f_+(0) = 0.9698(17)$
 $N_f = 2 + 1$: $f_+(0) = 0.9677(27)$
 $N_f = 2$: $f_+(0) = 0.9560(57)(62)$

A slight change of 1% in the central value could lead to totally different conclusions on the V_{us} anomaly (K_{l3} — K_{u2} discrepancy)

FLAG 2021





Master formula:

$$\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\text{EW}} |f_+^{K^0 \pi^-}(0)|^{2} I_{K\ell}^{(0)} \left(1 + \delta_{\text{EM}}^{K\ell} + \delta_{\text{SU}(2)}^{K\pi}\right)$$

$$\textbf{Phase-space factor:} \ \ I_{K\ell}^{(0)} = \int_{m_{\ell}^2}^{(M_K^2 - M_\pi)^2} \frac{dt}{M_K^8} \bar{\lambda}^{3/2} \Bigg(1 + \frac{m_{\ell}^2}{2t} \Bigg) \Bigg(1 - \frac{m_{\ell}^2}{t} \Bigg)^2 \Bigg[\bar{f}_+^2(t) + \frac{3m_{\ell}^2 \Delta_{K\pi}^2}{(2t + m_{\ell}^2) \bar{\lambda}} \bar{f}_0^2(t) \Bigg]$$

probes the **t-dependence** of the $K\pi$ form factors.

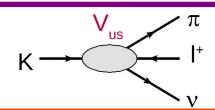
 $K\pi$ form factors

Obtained by fitting to the K_{13} Dalitz plot with specific parameterizations of f(t) (Taylor expansion, z-expansion, dispersive parameterization, pole parameterization ...)

> The **dispersive** parameterization currently quotes the smallest uncertainty:

Mode	Update
K^{0}_{e3}	0.15470(15)
K^{+}_{e3}	0.15915(15)
$K^0_{~\mu3}$	0.10247(15)
$K^+_{\mu 3}$	0.10553(16)

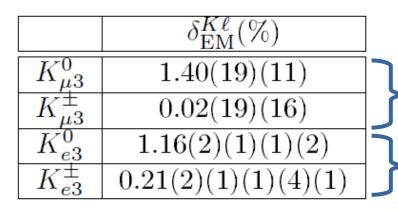
M. Moulson, in the 11th International Workshop on the **CKM Unitarity** Triangle, 2021

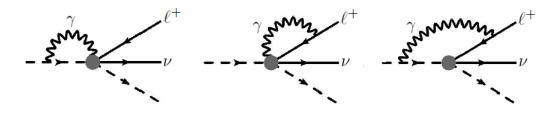


Master formula:

$$\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\text{EW}} |f_+^{K^0 \pi^-}(0)|^2 I_{K\ell}^{(0)} \left(1 + \delta_{\text{EW}}^{K\ell} + \delta_{\text{SU}(2)}^{K\pi}\right)$$

Long-distance electromagnetic RC





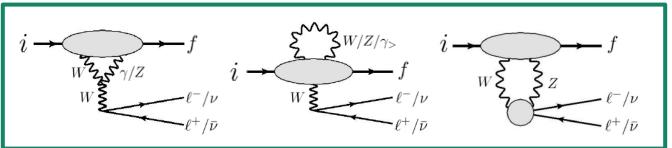
ChPT calculations at $O(e^2p^2)$ + model estimation of the LECs: ~ 10^{-3} error *Cirigliano et al., 2008 JHEP*

Sirlin's representation + ChPT + lattice QCD: ~10⁻⁴ error CYS, Galviz, Gorchtein and Meißner, 2021 PLB CYS, Galviz, Gorchtein and Meißner, 2021 JHEP

"Sirlin's representation" of the $O(G_E\alpha)$ electroweak RC:

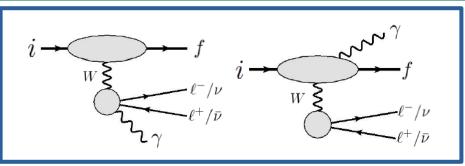
Sirlin, 1978 Rev.Mod.Phys CYS, 2021 Particles

Classifying the full $O(G_E\alpha)$ electroweak RC into **three categories**:



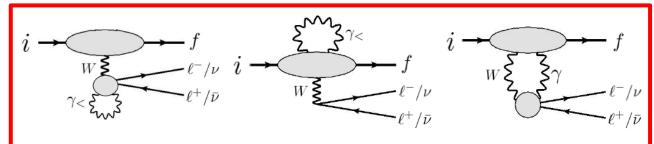
"Weak" RC:

Calculable perturbatively to satisfactory precision



Bremsstrahlung:

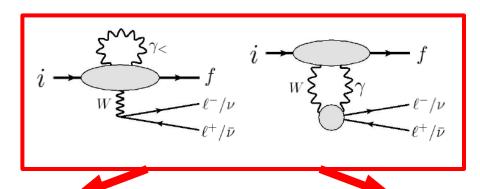
Fixed by particles' charges to satisfactory precision



(Virtual) electromagnetic RC:

Involve physics at small Q²

Further separation of the non-trivial virtual electromagnetic RC:



$$\left(\delta\mathfrak{M}_{2}+\delta\mathfrak{M}_{\gamma W}^{a}\right)_{\mathrm{int}}-\frac{G_{F}}{\sqrt{2}}\delta F_{3}^{\lambda}L_{\lambda}$$

Depends on physics at $Q^2 \ll 1GeV^2$.

Fixed by **form factors** to satisfactory precision

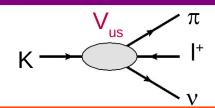
$\delta\mathfrak{M}^b_{\gamma W}$

Depends on physics at $Q^2 \sim 1 \text{GeV}^2$.

Fixed by **lattice QCD** to satisfactory precision

- Significant improvement of the K_{e3} RC precision: 10⁻³ → 10⁻⁴
- Next step: Applying the same framework to $\mathbf{K}_{\mu 3}$

Plans for direct lattice calculations of the full RC: ~10 years to reach 10⁻³ precision



Master formula:

$$\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\text{EW}} |f_+^{K^0 \pi^-}(0)|^2 I_{K\ell}^{(0)} \left(1 + \delta_{\text{EM}}^{K\ell} + \delta_{\text{SU}(2)}^{K\pi}\right)$$

ISB correction: presents only in the **K**⁺ channel by construction.

$$\delta^{K^+\pi^0}_{\mathrm{SU}(2)} \equiv \left(\frac{f_+^{K^+\pi^0}(0)}{f_+^{K^0\pi^-}(0)}\right)^2 - 1 = \frac{3}{2}\frac{1}{Q^2} \left[\frac{\hat{M}_K^2}{\hat{M}_\pi^2} + \frac{\chi_{p^4}}{2}\left(1 + \frac{m_s}{\hat{m}}\right)\right] \quad \text{(neglecting small EM contributions)}$$

$$Q^2 = (m_s^2 - \hat{m}^2)/(m_d^2 - m_u^2)$$

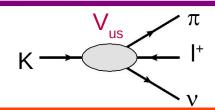
Most recent lattice QCD inputs: FLAG 2021

$$Q = 23.3(5)$$
, $m_s/\hat{m} = 27.42(12)$ $N_f = 2 + 1$

returns: $\delta_{SU(2)}^{K^+\pi^0} = 0.0457(20)$

Phenomenological inputs from $\eta \rightarrow 3\pi$ returns a somewhat larger value:

$$\delta_{SU(2)}^{K^+\pi^0} = 0.0572(68)$$



Master formula:

$$\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\text{EW}} |f_+^{K^0 \pi^-}(0)|^2 I_{K\ell}^{(0)} \left(1 + \delta_{\text{EM}}^{K\ell} + \delta_{\text{SU}(2)}^{K\pi}\right)$$

Averaging over all six channels:

	$ V_{us}f_+^K(0) $
$\overline{K_L e}$	$0.21617(46)_{\exp}(10)_{I_K}(3)_{\delta_{EM}}$
$K_S e$	$0.21530(122)_{\text{exp}}(10)_{I_K}(3)_{\delta_{\text{FM}}}$
K^+e	$0.21714(88)_{\text{exp}}(10)_{I_K}(21)_{\delta_{\text{SU}(2)}}(5)_{\delta_{\text{EM}}}$
$K_L \mu$	$0.21664(50)_{\text{exp}}(16)_{I_K}(24)_{\delta_{\text{EM}}}$
$K_S\mu$	$0.21265(466)_{\text{exp}}(16)_{I_K}(23)_{\delta_{\text{FM}}}$
$K^+\mu$	$0.21703(108)_{\text{exp}}(16)_{I_K}(21)_{\delta_{\text{SU}(2)}}(26)_{\delta_{\text{EM}}}$
Average: Ke	$0.21626(40)_{K}(3)_{HO}$
Average: Kµ	$0.21667(52)_{K}(3)_{HO}$
Average: tot	$0.21635(39)_{K}(3)_{HO}$

With Nf=2+1+1 lattice average of $f_{\perp}(0)$:

$$|V_{us}|_{K_{\ell 3}} = 0.22309(40)_K(39)_{\text{lat}}(3)_{\text{HO}}$$

Experimental uncertainties apparently dominate in all channels, but one still needs to scrutinize all the theory inputs to make sure the V_{us} anomaly does not come from some unexpected, large SM corrections.

Vector ratio R_v: A new avenue to determine V_{us}/V_{ud}

$$R_V = \frac{\Gamma(K_{\ell 3})}{\Gamma(\pi_{e3})} \qquad \text{K/}\pi \xrightarrow{\text{V}_{\text{us}}/\text{V}_{\text{ud}}} \stackrel{\pi}{\text{I}^+}$$

Czarnecki, Marciano and Sirlin, 2020 PRD

$$\left| \frac{V_{us} f_{K^+}}{V_{ud} f_{\pi^+}} \right| \, = \, 0.27600(29)_{\rm exp}(23)_{\rm RC} \; , \qquad \qquad$$
 from R_V
$$\left| \frac{V_{us} f_+^K(0)}{V_{ud} f_+^\pi(0)} \right| \, = \, 0.22216(64)_{{\rm BR}(\pi_{e3})}(39)_K(2)_{\tau_{\pi^+}}(1)_{{\rm RC}_\pi} \; , \qquad \qquad$$
 Theoretically cleaner!

Major limiting factor: π_{e3} branching ratio $BR(\pi_{e3}) = 1.038(6) \times 10^{-8}$ PIBETA, 2004 PRL + recent update

Next-generation experiment (PIONEER) may improve BR (π_{e3}) precision by a factor of 3 or more, making R_v competitive

Summary

- Several anomalies at the level $\sim 3\sigma$ have been observed in the measurements of the first-row CKM matrix elements V_{ud} and V_{us} in beta decay processes.
- **SM theory inputs** that require further improvements are:
 - V_{ud} sector: RC in single-nucleon and nuclear systems, ISB corrections in nuclear wavefunctions
 - V_{us} sector: Lattice inputs of <u>Kaon/pion decay constants</u> and <u>K π </u> form factor, <u>RC in leptonic and semileptonic kaon decays</u>, <u>K_{l3}</u> phase-space factor, <u>ISB corrections in K[±] semileptonic decays</u>
- Successful reduction of theory uncertainties above could increase the significance of the anomalies to more than 5σ
- Desirable future **experimental improvements**: $\underline{K}_{\underline{13}}$ and $\underline{\pi}_{\underline{e3}}$ branching ratios, neutron lifetime and $\underline{g}_{\underline{A}}$, ...