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Dark energy, dark matter Matter-antimatter asymmetry

Hierarchy problem

Unification of forces

BSM Physics at the Precision Frontier

Many unresolved problems call for physics beyond the Standard Model (BSM) 
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Most of the present anomalies in particle physics arise from precision 
experiments!  

● Muon g-2: ~4.2s discrepancy

● B-decay anomalies: ~3.1s discrepancy

BSM Physics at the Precision Frontier

Muon g-2 + B-decay anomalies “Flavor anomalies”

…and there is a THIRD TYPE!
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Anomalies in beta decays

Beta decays had been crucial in the shaping of Standard Model (SM)

1930: Neutrino postulation by Pauli
1956: Wu’s experiment confirmed P-violation in weak interaction (1957 Nobel Prize 
          by Lee and Yang)
1957: Feynman, Gell-Mann, Sudarshan and Marshak: V-A structure in the charged 
          weak interaction
1963: 2*2 unitary matrix by Cabibbo to mix the DS=0 and DS=1 charged weak current
1973: Kobayashi and Maskawa extended the matrix to 3*3 (the CKM matrix), 
          introduced the 3rd generation quarks (Nobel Prize 2008)
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The CKM matrix
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Beta decays place one of the most stringent tests of SM through precision 
measurements of the first-row CKM matrix elements V

ud
 and V

us

V
ud

V
us

V
us

/V
ud

Anomalies in beta decays
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Several anomalies are recently observed in the first-row CKM matrix elements!

Km2/pm2

K
l3

super-
allowed SM

SM prediction:

“Cabibbo Angle Anomaly (CAA)” ~ 3s

Anomalies in beta decays
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Several anomalies are recently observed in the first-row CKM matrix elements!

Km2/pm2

K
l3

SM

SM prediction:

“Cabibbo Angle Anomaly (CAA)” ~ 3s

super-
allowed

Anomalies in beta decays
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Several anomalies are recently observed in the first-row CKM matrix elements!

Km2/pm2

K
l3

SM

SM prediction:

super-
allowed

“Cabibbo Angle Anomaly (CAA)” ~ 3s

Anomalies in beta decays
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Discovery potential of the beta decay anomalies

A concrete example: First-row CKM unitarity with |V
ud

| from 0+ beta decay 
                                    and |V

us
| from K

l3 
decay 

SOURCES OF UNCERTAINTY:

CYS, Galviz, Marciano and Meißner, 2022 PRD
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Discovery potential of the beta decay anomalies

SOURCES OF UNCERTAINTY:

Experimental uncertainties in the
half-lives of the superallowed beta
decays

A concrete example: First-row CKM unitarity with |V
ud

| from 0+ beta decay 
                                    and |V

us
| from K

l3 
decay 

CYS, Galviz, Marciano and Meißner, 2022 PRD
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Discovery potential of the beta decay anomalies

SOURCES OF UNCERTAINTY:

Theory uncertainties in the
single-nucleon radiative corrections
(RC)

A concrete example: First-row CKM unitarity with |V
ud

| from 0+ beta decay 
                                    and |V

us
| from K

l3 
decay 

CYS, Galviz, Marciano and Meißner, 2022 PRD
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Discovery potential of the beta decay anomalies

SOURCES OF UNCERTAINTY:

Theory uncertainties in the
nuclear-structure (NS) corrections
in superallowed beta decays

A concrete example: First-row CKM unitarity with |V
ud

| from 0+ beta decay 
                                    and |V

us
| from K

l3 
decay 

CYS, Galviz, Marciano and Meißner, 2022 PRD
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Discovery potential of the beta decay anomalies

SOURCES OF UNCERTAINTY:

Combined experimental +
theory (non-lattice) uncertainties 
in the K

l3
 decay rate

A concrete example: First-row CKM unitarity with |V
ud

| from 0+ beta decay 
                                    and |V

us
| from K

l3 
decay 

CYS, Galviz, Marciano and Meißner, 2022 PRD
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Discovery potential of the beta decay anomalies

SOURCES OF UNCERTAINTY:

A concrete example: First-row CKM unitarity with |V
ud

| from 0+ beta decay 
                                    and |V

us
| from K

l3 
decay 

Theory uncertainties in the
lattice QCD calculation of the
Kp form factor at t=0 

CYS, Galviz, Marciano and Meißner, 2022 PRD
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Inputs in nucleon/ nuclear 
sector (Vud)



Single-nucleon radiative corrections (RC)

Radiative corrections: Higher-order SM corrections that involve emission +
reabsorption of virtual gauge bosons or emission of real photons.
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Tree-level diagram

Emission + 
reabsorption of virtual
gauge bosons

Emission of a real photon
(bremsstrahlung)



Single-nucleon radiative corrections (RC)

Primary source of uncertainty: the “single-nucleon axial gW-box diagram”

Main issue:Strong interactions governed by Quantum 

Chromodynamics (QCD) become non-perturbative

at the hadronic scale (Q2~1 GeV2) 

Major theory challenge in the past 4 decades 
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V
ud

Pre-2018 treatment: Divide the loop integral into 
different regions of Q2:

● Large-Q2: perturbative QCD
● Small-Q2: elastic form factors
● Intermediate Q2: Interpolating function

Marciano and Sirlin, 2006 PRL

Sirlin, 1978 Rev.Mod.Phys

Q2=-q2



Single-nucleon radiative corrections (RC)

CYS, Gorchtein, Patel and Ramsey-Musolf, 
2018 PRL
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       Year 2018: Dispersion relation (DR) treatment --- relate the loop integral to
       experimentally-measurable structure functions 

New treatment led to a significant change of |Vud|  

Pre-2018 2018

Data input: Parity-odd structure function F
3

from neutrino-nucleus scattering

|Vud|:

unveiling the tension in the top-row CKM unitarity

Confirmation by independent studies:
Czarnecki, Marciano and Sirlin, 2019 PRD
CYS, Feng, Gorchtein and Jin, 2020 PRD
Hayen, 2021 PRD
Shiells, Blunden and Melnitchouk, 2021 PRD



Further application of DR: Radiative corrections to the Gamow-Teller (GT)
matrix element

Single-nucleon radiative corrections (RC)

19

Fermi GTFree neutron decay
(forward limit):

The axial coupling constant g
A
 can be probed in correlation coefficients of the 

differential decay rate

The bare axial coupling constant was calculated to percent level with lattice QCD
(sub-percent in near future). Direct comparison with experimental measurement
serves as a strong probe of BSM physics

To make the comparison rigorous, one needs to understand precisely the full 
SM RC to g

A
.

Pioneering work (non-DR): Hayen, 2021 PRD 



Single-nucleon radiative corrections (RC)

DR formalism:
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Data input: Spin-dependent structure 
functions g

1
 and g

2
 obtained from 

deep inelastic scattering (DIS) 
experiments

Data

Theory

Integrand
Gorchtein and CYS, JHEP 10 (2021) 053

CLAS Collaboration (Jefferson Lab), EG1b experiment; 
2015 PRC and 2017 PRC

Excellent theory precision achieved: 



     Ongoing program: Calculate the box diagram directly with lattice QCD 
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Year 2020: First realistic lattice QCD
calculation of the simpler pion axial 
gW-box diagram
Feng, Gorchtein, Jin, Ma and CYS, 2020 PRL

Consequences: 
● Significant reduction of the 

theory uncertainty in pion 
semileptonic decay (p

e3
)

● Indirect implications on the 
free-neutron axial gW-box 
diagram

Single-nucleon radiative corrections (RC)

Major limiting factor of the DR treatment:  low quality of the neutrino data in the 
most interesting region: Q2 ~ 1GeV2

CYS, Feng, Gorchtein and Jin, 2020 PRD
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Neutron axial gW-box diagram is more complicated, but on the way.

(R. Gupta, Rare Processes and Precision Frontier Townhall Meeting, 2020)

Single-nucleon radiative corrections (RC)

     Ongoing program: Calculate the box diagram directly with lattice QCD 

Possible alternative approach using Feynman-Hellmann theorem (FHT)
CYS and Meißner, 2019 PRL

Major limiting factor of the DR treatment:  low quality of the neutrino data in the 
most interesting region: Q2 ~ 1GeV2
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Advantages:

1.Conserved vector current (CVC) at tree level
2.Large number of measured transitions, with 

15 among them whose lifetime precision is 
0.23% or better. Huge gain in statistics. 

Nuclear Structure (NS) corrections

0+

0+

Superallowed 0+→0+ nuclear beta decays provides the best 
measurement of V

ud
 

V
ud
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Nucleus-dependent
“outer corrections”
(under control)

Nuclear structure
effects in inner RC

Isospin-breaking
corrections

Superallowed 0+→0+ nuclear beta decays provides the best 
measurement of V

ud
 

Single-nucleon RC

Corrected ft (half-life*statistical function)-value:

Measured ft-value: nucleus-dependent

Corrected ft-value: nucleus-independent

Nuclear Structure (NS) corrections

Master formula:



25

d
NS

: nuclear modifications of the free-nucleon inner RC

● The low-energy absorption spectrum 
is distorted by nuclear corrections

● An important contribution from the quasi-
elastic nucleons was not properly 
accounted for in previous nuclear-model
calculations, which results in the large
uncertainty in d

NS
. 

LARGEST source
of uncertainty in V

ud
!

Nuclear Structure (NS) corrections

Ab-initio nuclear theory 
calculations 
of d

NS
 urgently needed!

CYS, Gorchtein and Ramsey-Musolf, 
2019 PRD; Gorchtein, 2019 PRL
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d
C
: isospin-breaking (ISB) corrections to nuclear wavefunctions

Essential to align the Ft-values of different 
superallowed transitions.

w/o d
C

with d
C

Hardy and Towner, 2020 PRC

It turns out that such alignment is only achieved within 
some specific choices of nuclear models 
(e.g. Woods Saxon), but not the others. 

A model-independent assessment of d
C
 is needed!

Nuclear Structure (NS) corrections
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Inputs in Kaon/pion sector
(Vus and Vus/Vud)
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Kaon/pion leptonic decay (Km2/pm2)

Marciano, 2004 PRL; Cirigliano and 
Neufeld, 2011 PLB

Lattice QCD inputs:   K+/p+ decay constants  

Electromagnetic RC 
in ChPT: 

FLAG 2021

 

Advantage: LECs cancel in the ratio

Knecht et al., 2000 EPJC
Cirigliano and Neufeld, 2011 PLB

Direct lattice QCD calculation of the EMRC+isospin breaking correction 
(contained in the physical  K+/p+ decay constants) consistent with ChPT result,
with slightly lower uncertainty Giusti et al, 2018 PRL

Total:

“axial ratio” R
A

K+/p+

m+

n

V
us

/V
ud
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Master formula:

Measurements of branching ratio exist in all six channels: 

PLB632,43(2006), PRD70,092006(2004), ...

PLB653,145(2007), PLB636,173(2006),
PLB535,37(2002), ...

PLB804,135378(2020)

JHEP02,098(2008), PRD6,1254(1972), ...

New!

Kaon semileptonic decays (Kl3)

K

p
l+

n

V
us
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Master formula:

C
K
: Known isospin factor

S
EW

: Short-distance electroweak RCs

Marciano and Sirlin, 1993 PRL

Kaon semileptonic decays (Kl3)

K

p
l+

n

V
us
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Master formula:

Kp form factor at t=0:

FLAG 2021

A slight change of 1% in the central value
could lead to totally different conclusions 
on the V

us
 anomaly (K

l3
—Km2 discrepancy)

Lattice QCD inputs: 

Kaon semileptonic decays (Kl3)

K

p
l+

n

V
us
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Master formula:

Phase-space factor: 

Rescaled
Kp form factors

probes the t-dependence of the Kp form factors.

Obtained by fitting to the K
l3
 Dalitz plot with specific parameterizations 

of f(t) (Taylor expansion, z-expansion, dispersive parameterization, pole parameterization ...)

The dispersive 
parameterization 
currently quotes the 
smallest uncertainty:

M. Moulson, 
in the 11th 
International 
Workshop on the
CKM Unitarity 
Triangle, 2021 

Kaon semileptonic decays (Kl3)

K

p
l+

n

V
us
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Master formula:

Long-distance electromagnetic RC

Cirigliano et al., 2008 JHEP

Sirlin’s representation + ChPT + lattice QCD:
~10-4 error CYS, Galviz, Gorchtein and Meißner, 2021 PLB 

CYS, Galviz, Gorchtein and Meißner, 2021 JHEP

ChPT calculations at O(e2p2) + model estimation
of the LECs: ~10-3 error 

Kaon semileptonic decays (Kl3)

K

p
l+

n

V
us
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“Sirlin’s representation” of the O(G
F
a) electroweak RC:

Kaon semileptonic decays (Kl3)

“Weak” RC:
Calculable perturbatively 
to satisfactory precision

(Virtual)
electromagnetic RC:

Involve physics at
small Q2

Sirlin, 1978 Rev.Mod.Phys
CYS, 2021 Particles 

Classifying the full O(G
F
a) electroweak RC into three categories:

Bremsstrahlung:
Fixed by particles’ charges

to satisfactory precision
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Further separation of the non-trivial virtual electromagnetic RC:

Kaon semileptonic decays (Kl3)

Depends on physics at
Q2 << 1GeV2. 

Fixed by form factors
to satisfactory precision

Depends on physics at
Q2 ~ 1GeV2. 

Fixed by lattice QCD
to satisfactory precision

● Significant improvement of the K
e3

 RC precision: 10-3 → 10-4

● Next step: Applying the same framework to Km3 

Plans for direct lattice calculations of the full RC: ~10 years to reach 10-3 precision

Boyle et al., SnowMass 2021 LoI 
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Master formula:

ISB correction: presents only in the K+ channel by construction.

FLAG 2021Most recent lattice QCD inputs: 

returns:

Phenomenological inputs from h→3p returns a somewhat larger value: 

Colangelo, Lanz, Leutwyler and Passemar, 2018 EPJC 

(neglecting small EM
contributions)

Kaon semileptonic decays (Kl3)

K

p
l+

n

V
us
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Master formula:

Averaging over all six channels:

CYS, Galviz, Marciano and Meißner, 2022 PRD

With Nf=2+1+1 lattice average of f
+
(0):

Experimental uncertainties apparently dominate
in all channels, but one still needs to scrutinize
all the theory inputs to make sure the V

us

anomaly does not come from some unexpected, 
large SM corrections. 

Kaon semileptonic decays (Kl3)

K

p
l+

n

V
us
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Vector ratio R
V 
: A new avenue to determine V

us
/V

ud
 

Czarnecki, Marciano and Sirlin, 2020 PRD

from R
A

from R
V

Major limiting factor: p
e3

 branching ratio
PIBETA, 2004 PRL + recent update

Next-generation experiment (PIONEER) may improve BR (p
e3

) precision by 
a factor of 3 or more, making R

V
 competitive

Aguilar-Arevalo et al., SnowMass 2021 LoI;
Hertzog, in TAU2021

Theoretically cleaner!

Kaon semileptonic decays (Kl3)

K/p

p

l+

n

V
us

/V
ud
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● Several anomalies at the level ~3s have been observed in the 
measurements of the first-row CKM matrix elements Vud and Vus in 
beta decay processes.

● SM theory inputs that require further improvements are:
● Vud sector: RC in single-nucleon and nuclear systems, ISB 

corrections in nuclear wavefunctions
● Vus sector: Lattice inputs of Kaon/pion decay constants and Kp 

form factor, RC in leptonic and semileptonic kaon decays, Kl3 
phase-space factor, ISB corrections in K+ semileptonic decays

● Successful reduction of theory uncertainties above could increase 
the significance of the anomalies to more than 5s

● Desirable future experimental improvements: Kl3 and pe3 branching 
ratios, neutron lifetime and gA, ...

Summary

Thanks for your attention!
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