

Current status of the first-row CKM unitarity from semileptonic decay

processes

Chien-Yeah Seng

Helmholtz-Institut für Strahlen- und Kernphysik and

Bethe Center for Theoretical Physics,

Universität Bonn

cseng@hiskp.uni-bonn.de

LNF General Seminar, Istituto Nazionale di Fisica Nucleare (INFN), Italy

9 February, 2022

Many unresolved problems call for physics beyond the Standard Model (BSM)

Most of the present anomalies in particle physics arise from **precision experiments**!

• **Muon g-2**: \sim 4.2 σ discrepancy

$$
\Delta a_{\mu} = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 251(41)_{\text{exp}}(43)_{\text{th}} \times 10^{-11}
$$

• **B-decay anomalies:** \sim 3.1 σ discrepancy

$$
R_K \equiv \frac{\mathcal{B}(\bar{B} \to K\mu^+\mu^-)}{\mathcal{B}(\bar{B} \to K e^+e^-)} = 0.846^{+0.042}_{-0.039} \text{(stat)}^{+0.013}_{-0.012} \text{(syst)}
$$

Muon g-2 + B-decay anomalies **"Flavor anomalies"**

…and there is a **THIRD TYPE**!

Anomalies in beta decays

Beta decays had been crucial in the shaping of **Standard Model (SM)**

- **1930**: **Neutrino postulation** by Pauli
- **1956**: Wu's experiment confirmed **P-violation** in weak interaction (1957 Nobel Prize by Lee and Yang)
- **1957**: Feynman, Gell-Mann, Sudarshan and Marshak: **V-A structure** in the charged weak interaction
- **1963: 2*2 unitary matrix** by Cabibbo to mix the $\Delta S=0$ and $\Delta S=1$ charged weak current
- **1973**: Kobayashi and Maskawa extended the matrix to 3*3 (**the CKM matrix**),

introduced the $3rd$ generation quarks (Nobel Prize 2008)

$$
\Psi_{d,f} = \begin{pmatrix} d \\ s \\ b \end{pmatrix}_f = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_m
$$

The CKM matrix

Beta decays place **one of the most stringent tests of SM** through precision measurements of the **first-row CKM matrix elements V_{ud} and V_{us}**

Vud

V us

Several **anomalies** are recently observed in the **first-row CKM matrix elements**!

SM prediction:
$$
|V_{ud}|^2 + |V_{us}|^2 + |\mathbf{V}_{ub}|^2 = 1
$$

Several **anomalies** are recently observed in the **first-row CKM matrix elements**!

SM prediction:
$$
|V_{ud}|^2 + |V_{us}|^2 + |\mathbf{V}_{ub}|^2 = 1
$$

Several **anomalies** are recently observed in the **first-row CKM matrix elements**!

SM prediction:
$$
|V_{ud}|^2 + |V_{us}|^2 + |\mathbf{V}_{ub}|^2 = 1
$$

$$
|V_{ud}|_{0^+}^2 + |V_{us}|_{K_{\ell 3}}^2 + |V_{ub}|^2 - 1 = -0.0021(7)
$$

SOURCES OF UNCERTAINTY:

$ \overline{V_{ud}} _{0^+}^2 + V_{us} _{K_{\ell 3}}^2$	-2.1×10^{-3}
$\delta V_{ud} ^2_{0+}, \exp$	2.1×10^{-4}
$\delta V_{ud} ^2_{0+}, \, \overline{{\bf RC}}$	$1.8 \times \sqrt{10^{-4}}$
$\delta V_{ud} ^2_{0+},\,\text{NS}$	$5.3 \times \overline{10^{-4}}$
$\delta V_{us} ^2_{K_{\ell3}},\,\exp{+{\rm th}}$	1.8×10^{-4}
$\delta V_{us} ^2_{K_{\ell 3}}$, lat	$1.7 \times \overline{10^{-4}}$
Total uncertainty	6.5×10^{-4}
Significance level	3.2σ

CYS, Galviz, Marciano and Meißner, 2022 PRD

$$
|V_{ud}|_{0^+}^2 + |V_{us}|_{K_{\ell 3}}^2 + |V_{ub}|^2 - 1 = -0.0021(7)
$$

CYS, Galviz, Marciano and Meißner, 2022 PRD

Significance level

 3.2σ

$$
|V_{ud}|_{0^+}^2 + |V_{us}|_{K_{\ell 3}}^2 + |V_{ub}|^2 - 1 = -0.0021(7)
$$

SOURCES OF UNCERTAINTY:	$ V_{ud} _{0+}^2+ V_{us} _{K_{\ell3}}^2-1$	-2.1×10^{-3}
	$\delta V_{ud} ^2_{0+}, \overline{\exp} $	2.1×10^{-4}
$\delta V_{ud} ^2_{0+}$, RC: Theory uncertainties in the single-nucleon radiative corrections (RC)	$\delta V_{ud} ^2_{0+}, \, \mathbf{RC}$	1.8×10^{-4}
	$\delta V_{ud} ^2_{\alpha+}$, NS	5.3×10^{-4}
	$\overline{\delta V_{us} ^2_{K_{\rho_3}}}, \exp{+t\mathbf{h}}$	1.8×10^{-4}
	$\overline{\delta V_{us} ^2_{K_{\rho_3}}},$ lat	1.7×10^{-4}
	Total uncertainty	$6.5 \times \overline{10^{-4}}$
	Significance level	3.2σ

CYS, Galviz, Marciano and Meißner, 2022 PRD

$$
|V_{ud}|_{0^+}^2 + |V_{us}|_{K_{\ell 3}}^2 + |V_{ub}|^2 - 1 = -0.0021(7)
$$

$ \overline{V_{ud}} _{0^+}^2 + \overline{V}_{us} ^2_{K_{\ell 3}}$	$-2.1 \times \overline{10^{-3}}$
$\delta V_{ud} ^2_{0+}, \overline{\exp}$	2.1×10^{-4}
$\delta V_{ud} ^2_{0+}, \overline{\mathrm{RC}}$	$1.8 \times \sqrt{10^{-4}}$
$\delta V_{ud} ^2_{0+}, \text{NS}$	5.3×10^{-4}
$\delta V_{us} ^2_{K_{\ell3}},\,\exp{+{\rm th}}$	1.8×10^{-4}
$\overline{\delta V_{us} ^2_{K_{\ell3}}},$ lat	$1.7 \times \overline{10^{-4}}$
Total uncertainty	6.5×10^{-4}
Significance level	3.2σ

CYS, Galviz, Marciano and Meißner, 2022 PRD

$$
|V_{ud}|_{0^+}^2 + |V_{us}|_{K_{\ell 3}}^2 + |V_{ub}|^2 - 1 = -0.0021(7)
$$

SOURCES OF UNCERTAINTY:

$$
\delta|V_{us}|^2_{K_{\ell 3}},\,\exp{+{\rm th}}\text{:}
$$

Combined experimental + theory (non-lattice) uncertainties in the K_{13} decay rate

	$ V_{ud} _{0^+}^2+ V_{us} _{K_{\ell 3}}^2$	-2.1×10^{-3}
	$\delta V_{ud} ^2_{0+}, \exp$	2.1×10^{-4}
	$\delta V_{ud} ^2_{0+}, \overline{\mathrm{RC}}$	1.8×10^{-4}
	$\delta V_{ud} ^2_{0+}, \text{ NS}$	5.3×10^{-4}
	$\overline{\delta V_{us} ^2_{K_{\ell3}}},\exp{+{\rm th}}$	1.8×10^{-4}
	$\delta V_{us} ^2_{K_{\rho_3}}$, lat	1.7×10^{-4}
	Total uncertainty	$6.5\times\overline{10^{-4}}$
	Significance level	3.2σ

CYS, Galviz, Marciano and Meißner, 2022 PRD

$$
|V_{ud}|_{0^+}^2 + |V_{us}|_{K_{\ell 3}}^2 + |V_{ub}|^2 - 1 = -0.0021(7)
$$

SOURCES OF UNCERTAINTY:

$$
\delta|V_{us}|^2_{K_{\ell3}},\,{\bf lat}\boldsymbol{:}
$$

Theory uncertainties in the lattice QCD calculation of the K_{π} form factor at t=0

$ V_{ud} _{0^+}^2+ V_{us} _{K_{\ell 3}}^2$	-2.1×10^{-3}
$\delta V_{ud} ^2_{0+}, \exp$	2.1×10^{-4}
$\delta V_{ud} ^2_{0+}, \overline{\rm \,RC}$	1.8×10^{-4}
$\delta V_{ud} ^2_{0+},\,\text{NS}$	5.3×10^{-4}
$\overline{\delta V_{us} }^2_{K_{\ell3}},\exp{+{\rm th}}$	1.8×10^{-4}
$\delta V_{us} ^2_{K_{\ell 3}}$, lat	1.7×10^{-4}
Total uncertainty	6.5×10^{-4}
Significance level	3.2σ

CYS, Galviz, Marciano and Meißner, 2022 PRD

Inputs in nucleon/ nuclear sector (V_{ud})

Single-nucleon radiative corrections (RC)

Tree-level diagram

Radiative corrections: Higher-order SM corrections that involve emission + reabsorption of virtual gauge bosons or emission of real photons.

Single-nucleon radiative corrections (RC)

Primary source of uncertainty: the "single-nucleon axial γ **W-box diagram**"

Main issue:Strong interactions governed by **Quantum Chromodynamics (QCD)** become non-perturbative at the hadronic scale $(Q^2{\sim}1~\text{GeV}^2)$ Major theory challenge in the past 4 decades *Sirlin, 1978 Rev.Mod.Phys*

Pre-2018 treatment: Divide the loop integral into different regions of Q^2 :

- Large-Q²: perturbative QCD
- Small-Q²: elastic form factors
- Intermediate Q^2 : Interpolating function

Marciano and Sirlin, 2006 PRL

 2^2 =-0²

experimentally-measurable structure functions CYS, Gorchtein, Patel and Ramsey-Musolf, *2018 PRL* **Year 2018**: **Dispersion relation (DR)** treatment --- relate the loop integral to

$$
\Box_{\gamma W}^V \ = \ \frac{\alpha_{em}}{\pi \mathring{g}_V} \int_0^\infty \frac{dQ^2}{Q^2} \frac{M_W^2}{M_W^2 + Q^2} \int_0^1 dx \frac{1+2r}{(1+r)^2} F_3^{(0)}(x,Q^2)
$$

Data input: **Parity-odd structure function F³** from **neutrino-nucleus scattering**

New treatment led to a **significant change of |Vud|**

Pre-2018 2018 **|Vud|:** $0.97420(21) \rightarrow 0.97370(14)$

unveiling the tension in the top-row CKM unitarity

Czarnecki, Marciano and Sirlin, 2019 PRD
Confirmation by independent studies: *CYS, Feng Gorchtein and Jin. 2020 PRD CYS, Feng, Gorchtein and Jin, 2020 PRD Hayen, 2021 PRD Shiells, Blunden and Melnitchouk, 2021 PRD*

Single-nucleon radiative corrections (RC)

Further application of DR: Radiative corrections to the **Gamow-Teller (GT)** matrix element

Free neutron decay (forward limit):

$$
\left\langle p\right| J_W^{\mu}\left|n\right\rangle = \bar{u}_p \gamma^{\mu}\left(\!\!\begin{smallmatrix}\text{Fermi} \\ \text{G}V \end{smallmatrix}\!\!\right. + \left.\!\!\begin{smallmatrix}\text{GT} \\ \text{G}A\gamma_5\end{smallmatrix}\!\!\right) u_n
$$

The axial coupling constant $\boldsymbol{\mathsf{g}}_{\text{\tiny A}}$ can be probed in correlation coefficients of the differential decay rate

$$
d\Gamma \propto 1 + \Omega_{E_e E_\nu}^{\vec{p}_e \cdot \vec{p}_\nu} + \hat{e}_s \cdot \left[\Omega_{E_e}^{\vec{p}_e} + \Omega_{E_\nu}^{\vec{p}_\nu} \right]
$$

The **bare** axial coupling constant was calculated to percent level with **lattice QCD** (sub-percent in near future). Direct comparison with experimental measurement serves as **a strong probe of BSM physics**

To make the comparison rigorous, one needs to understand precisely the full **SM RC to** g_A **.**

Pioneering work (non-DR): *Hayen, 2021 PRD*

DR formalism:

$$
\Box^A_{\gamma W} \ = \ -\frac{2\alpha_{em}}{\pi \mathring g_A} \int_0^\infty \frac{dQ^2}{Q^2} \frac{M_W^2}{M_W^2 + Q^2} \int_0^1 \frac{dx}{(1+r)^2} \left[\frac{5+4r}{3} g_1^{(0)}(x,Q^2) - \frac{4M^2x^2}{Q^2} g_2^{(0)}(x,Q^2) \right]
$$

Major limiting factor of the DR treatment: **low quality of the neutrino data** in the most interesting region: $Q^2 \sim 1$ GeV²

 Ongoing program: Calculate the box diagram directly with **lattice QCD**

Year 2020: First realistic lattice QCD calculation of the simpler **pion** axial γ W-box diagram

Feng, Gorchtein, Jin, Ma and CYS, 2020 PRL

Consequences:

- Significant reduction of the theory uncertainty in **pion semileptonic decay** (π_{∞})
- Indirect implications on the **free-neutron** axial γ W-box diagram

CYS, Feng, Gorchtein and Jin, 2020 PRD

Single-nucleon radiative corrections (RC)

Major limiting factor of the DR treatment: **low quality of the neutrino data** in the most interesting region: **Q2 ~ 1GeV2**

 Ongoing program: Calculate the box diagram directly with **lattice QCD**

Neutron axial γ W-box diagram is more complicated, but on the way.

(R. Gupta, Rare Processes and Precision Frontier Townhall Meeting, 2020)

Possible alternative approach using **Feynman-Hellmann theorem (FHT)** *CYS and Meißner, 2019 PRL*

Superallowed 0+→0⁺ nuclear beta decays provides the best measurement of V_{ud}

Advantages:

- 1.Conserved vector current (CVC) at tree level 2.Large number of measured transitions, with 15 among them whose lifetime precision is
	- 0.23% or better. Huge gain in statistics.

Superallowed 0+→0⁺ nuclear beta decays provides the best measurement of V_{ud}

Master formula:

$$
|V_{ud}|^2 = \frac{2984.43 \text{ s}}{\mathcal{F}t (1 + \Delta_R^V)}
$$
 Single-nucleon RC

Corrected ft (half-life*statistical function)-value:

Corrected ft-value: nucleus-independent

δ_{NS}: nuclear modifications of the free-nucleon inner RC

2019 PRD; Gorchtein, 2019 PRL

of δ_{NS} urgently needed!

δ_c: isospin-breaking (ISB) corrections to nuclear wavefunctions

R^p_{β} R^n_α

Essential to **align the Ft-values** of different superallowed transitions.

It turns out that such alignment is only achieved within **some specific choices of nuclear models**

(e.g. Woods Saxon), but not the others.

A **model-independent assessment** of $\delta_{\rm c}$ is needed!

Inputs in Kaon/pion sector (Vus and V us /Vud)

$\rm{Kaon/pion}$ leptonic decay $\rm(K_{\mu2}/\pi_{\mu2})$

$$
\frac{|V_{us}|f_{K^+}}{|V_{ud}|f_{\pi^+}} = \left[\frac{\Gamma_{K_{\mu2}}M_{\pi^+}}{\Gamma_{\pi_{\mu2}}M_{K^+}}\right]^{1/2} \frac{1 - m_{\mu}^2/M_{\pi^+}^2}{1 - m_{\mu}^2/M_{K^+}^2} (1 - \delta_{\rm EM}/2)
$$

Marciano, 2004 PRL; Cirigliano and Neufeld, 2011 PLB **"axial ratio" R^A**

Lattice QCD inputs: $K^{\dagger}/\pi^{\dagger}$ decay constants

$$
N_f = 2 + 1 + 1 : f_{K^+}/f_{\pi^+} = 1.1932(21)
$$

\n
$$
N_f = 2 + 1 : f_{K^+}/f_{\pi^+} = 1.1917(37)
$$

\n
$$
N_f = 1 : f_{K^+}/f_{\pi^+} = 1.205(18)
$$

Electromagnetic RC $\delta_{\rm EM} = \delta_{\rm EM}^K - \delta_{\rm EM}^{\pi} = -0.0069(17)$ Knecht et al., 2000 EPJC **in ChPT:** *Cirigliano and Neufeld, 2011 PLB*

Advantage: **LECs cancel in the ratio**

Direct lattice QCD calculation of the EMRC+isospin breaking correction (contained in the physical $K^2 + \pi^2$ decay constants) consistent with ChPT result, with slightly lower uncertainty *Giusti et al, 2018 PRL*

Total:
$$
|V_{us}/V_{ud}| = 0.23131(41)_{\text{lat}}(24)_{\text{exp}}(19)_{\text{RC}}
$$

Measurements of **branching ratio** exist in all **six channels**:

 C_{K} : Known isospin factor

 S_{env} : Short-distance electroweak RCs

$$
S_{\rm EW} = 1.0232(3)
$$

Marciano and Sirlin, 1993 PRL

Master formula:

$$
\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\text{EW}} \sqrt{f_{\pm}^{K^0 \pi^-}(0)} 2 I_{K\ell}^{(0)} \left(1 + \delta_{\text{EM}}^{K\ell} + \delta_{\text{SU(2)}}^{K\pi}\right)
$$

K π form factor at t=0: $\langle \pi^-(p')| J_W^{\mu} | K^0(p) \rangle = f_+^{K^0 \pi^-}(t) (p+p')^{\mu} + f_-^{K^0 \pi^-}(t) (p-p')^{\mu}$

FLAG 2021

Lattice QCD inputs:

$$
N_f = 2 + 1 + 1 : f_{+}(0) = 0.9698(17)
$$

\n
$$
N_f = 2 + 1 : f_{+}(0) = 0.9677(27)
$$

\n
$$
N_f = 2 : f_{+}(0) = 0.9560(57)(62)
$$

A slight change of **1%** in the central value could lead to **totally different conclusions** on the \mathbf{V}_{us} **anomaly** (K_{I3}—K_{µ2} discrepancy)

FLAG average for $N_f = 2 + 1 + 1$ **ETM 21** = IM 21
CalLat 20
FNAL/MILC 17
ETM 14E $N_f = 2 + 1 +$ NALIMILC 14A CD 13A QCD 13A
LC 13A
LC 11 (stat. err. only)
M 10E (stat. err. only) ጡ FLAG average for $N_f = 2 + 1$ OCDSF/UKOCD 16 $N_f = 2 + 1$ OCD/TWOCD 10 BC/UKOCD 10A **BMW 10** IILC 09A MILC 09
Aubin 08
RBC/UKOCD 08
HPQCD/UKQCD 07
MILC 04 FLAG average for $N_f = 2$ ETM 14D (stat. err. only)
ALPHA 13A
ETM 10D (stat. err. only)
ETM 09
QCDSF/UKQCD 07 $= 2$ ž 1.14 1.18 1.22 1.26

 $f_{K^{\pm}}/f_{\pi^{\pm}}$

31

FLAG 2021

Master formula:

$$
\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\rm EW} |f_+^{K^0\pi^-}(0)| \left(\overline{I_{K\ell}^{(0)}} \right) \left(1 + \delta_{\rm EM}^{K\ell} + \delta_{\rm SU(2)}^{K\pi} \right)
$$

Phase-space factor:
$$
I_{K\ell}^{(0)} = \int_{m_{\ell}^2}^{(M_K^2 - M_{\pi})^2} \frac{dt}{M_K^8} \bar{\lambda}^{3/2} \left(1 + \frac{m_{\ell}^2}{2t} \right) \left(1 - \frac{m_{\ell}^2}{t} \right)^2 \left[\bar{f}_+^2(t) + \frac{3m_{\ell}^2 \Delta_K^2}{(2t + m_{\ell}^2 + m_{\ell}^2)} \right]
$$

probes the **t-dependence** of the K_{π} form factors.

Rescaled K_{π} form factors

Obtained by fitting to the **Kl3 Dalitz** plot with **specific parameterizations of f(t)** (Taylor expansion, z-expansion, dispersive parameterization, pole parameterization ...)

"Sirlin's representation" of the O(G_Fα) electroweak RC:

Sirlin, 1978 Rev.Mod.Phys CYS, 2021 Particles

Classifying the full $O(G_F\alpha)$ electroweak RC into **three categories**:

Further separation of the non-trivial virtual electromagnetic RC:

- Significant improvement of the $K_{\epsilon 3}$ **RC** precision: 10^{-3} \rightarrow 10^{-4}
- Next step: Applying the same framework to K_{α}

Plans for direct lattice calculations of the full RC: \sim 10 years to reach 10 $\mathrm{^3}$ precision

Master formula:

$$
\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\text{EW}} |f_+^{K^0\pi^-}(0)|^2 I_{K\ell}^{(0)} \left(1 + \delta_{\text{EM}}^{K\ell} + \underbrace{\delta_{\text{SU}(2)}^{K\pi}}\right)
$$

ISB correction: presents only in the K⁺ channel by construction.

$$
\delta_{\rm SU(2)}^{K^+\pi^0} \equiv \left(\frac{f_+^{K^+\pi^0}(0)}{f_+^{K^0\pi^-}(0)}\right)^2 - 1 = \frac{3}{2} \frac{1}{Q^2} \left[\frac{\hat{M}_K^2}{\hat{M}_\pi^2} + \frac{\chi_{p^4}}{2} \left(1 + \frac{m_s}{\hat{m}}\right) \right] \begin{array}{c} \text{(neglecting small EM} \\ \text{contributions)} \end{array}
$$
\n
$$
Q^2 = (m_s^2 - \hat{m}^2)/(m_d^2 - m_u^2)
$$

Most recent lattice QCD inputs: *FLAG 2021*

$$
Q = 23.3(5), \quad m_s/\hat{m} = 27.42(12) \qquad N_f = 2 + 1
$$

returns: $\delta_{SU(2)}^{K^+\pi^0} = 0.0457(20)$

Phenomenological inputs from $\eta \rightarrow 3\pi$ returns a somewhat larger value:

$$
\delta_{\text{SU(2)}}^{K^+\pi^0} = 0.0572(68)
$$

Colangelo, Lanz, Leutwyler and Passemar, 2018 EPJC

Master formula:

$$
\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\text{EW}} |f_+^{K^0\pi^-}(0)|^2 I_{K\ell}^{(0)} \left(1 + \delta_{\text{EM}}^{K\ell} + \delta_{\text{SU}(2)}^{K\pi}\right)
$$

Averaging over all six channels:

CYS, Galviz, Marciano and Meißner, 2022 PRD

With Nf=2+1+1 lattice average of $f^{}_{+} (0)$:

 $|V_{us}|_{K_{\ell 3}} = 0.22309(40)_K(39)_{\text{lat}}(3)_{\text{HO}}$

Experimental uncertainties apparently dominate in all channels, but one still needs to scrutinize all the **theory inputs** to make sure the **V us anomaly** does not come from some **unexpected, large SM corrections**.

Vector ratio R_v : A new avenue to determine V $_{\mathsf{us}}$ **/V** $_{\mathsf{ud}}$

$$
R_V = \frac{\Gamma(K_{\ell 3})}{\Gamma(\pi_{e3})}
$$

$$
K/\pi \longrightarrow \sum_{v=0}^{N_{us}/N_{ud}} \frac{\pi}{v}
$$

Czarnecki, Marciano and Sirlin, 2020 PRD

from R_A
$$
\left| \frac{V_{us} f_{K^+}}{V_{ud} f_{\pi^+}} \right| = 0.27600(29)_{exp}(23)_{RC}
$$
,
from R_V $\left| \frac{V_{us} f^K_+(0)}{V_{ud} f^{\pi}_+(0)} \right| = 0.22216(64)_{BR(\pi_{e3})}(39)_K(2)_{\tau_{\pi^+}}(1)_{RC_{\pi^-}}$, \longleftarrow Theoretically cleaner!

Major limiting factor: $\pi_{\mathbf{e}3}$ **branching ratio** $BR(\pi_{\mathbf{e}3}) = 1.038(6) \times 10^{-8}$ *PIBETA, 2004 PRL + recent update*

Next-generation experiment (PIONEER) may improve BR (π_{e3}) precision by a factor of 3 or more, making R_{v} competitive

> *Aguilar-Arevalo et al., SnowMass 2021 LoI; Hertzog, in TAU2021*

Summary

- Several **anomalies** at the level $\sim 3\sigma$ have been observed in the measurements of the **first-row CKM matrix elements** V_{ud} **and** V_{us} in beta decay processes.
- SM theory inputs that require further improvements are:
	- V_{ud} sector: RC in single-nucleon and nuclear systems, ISB corrections in nuclear wavefunctions
	- \mathbf{V}_{us} sector: Lattice inputs of <u>Kaon/pion decay constants</u> and $\underline{\text{K}\pi}$ form factor, RC in leptonic and semileptonic kaon decays, K_{13} phase-space factor, ISB corrections in K⁺ semileptonic decays
- Successful reduction of theory uncertainties above could increase the significance of the anomalies to more than 5σ
- Desirable future **experimental improvements**: \underline{K}_{13} and π_{e3} branching <u>ratios, neutron lifetime</u> and $\mathbf{g}_{_{\! \!\!\mathbf{A}}}, ...$

Thanks for your attention!