
Neural Network
Corso di Formazione Nazionale INFN

"Introduzione alle reti neurali e applicazioni sui dispositivi elettronici"

Napoli, 07/04/2022



Contents

Machine Learning: classification

Multi-layer perceptron and NN

Activation functions

Batch size and minimization algorithms

Loss functions

Validation procedure

Hyperparameters in a NN

Overfitting problem

Evaluation metrics



Machine Learning: classification
• In these slides we want to introduce a powerful classification algorithm: the 

Neural Network

• The simplest version of a Neural Network has already seen in the last lesson: the 
Perceptron

• It represents the building block of a NN in a way that we will explain below in 
the lesson

• Our goal is always the discrimination of different classes, we want to obtain a 
model that will be able to discriminate between 2 classes or more through a 
training done on a specific dataset.

• The algorithm, during the train, adapts several number of parameters (we 
decide how many params) to discriminate the classes defined by us. It is quite 
similar to perceptron algorithm but this time we will have a more complicated 
structure of parameters.



Classification 

Problem
• There are a lot of examples in the real life 

in which we want to automatize a 

classification problem:

• if an e-mail is spam or not,

• if a recorded event is a signal or 

background

• if we want to develop an archive that 

is capable of discriminate objects on 

its own (for example using as input a 

picture)



Classification problem
• Our first step is the selection of our 

dataset, we need of a set of features 

that describes what we want to 

discriminate (for example if we want to 

discriminate electronic devices we can 

use the physical sizes of the object, the 

weight, the cost, ..)

• Next step, we must define the classes 

and so the targets (in the previous 

example: mobile phone, PC, tablet,..) 



Classification problem 

• In the major part of our problems, we start from the X,Y information. We already have at our 

disposal the features of what we want to discriminate and the classes names

• For our algorithm we need to transform the Y information in a numeric information to insert that 

in the loss function.

• The simplest way to do that is to ordered our classes from 0 to N, and N is the number of classes

• This is a good method but we must avoid to use it, because it add an intrinsic order between our 

classes: the algorithm could prefer the class with the high number due to how we define the loss 

function.

• The most used method is to create dummies variables:



Perceptron
• As seen in the last lesson the simplest 

algorithm able to discriminate between 

two classes (binary classificator) is the 

perceptron.

• The perceptron is the starting point to 

build a Neural Network, but we will need a 

lot of them!

• As a reminder: in a single perceptron we 

have m+1 weights (where m is the number 

of input variables), an activation function, 

and an output that is a linear function of 

inputs and weights



From linear to nonlinear
The linearity approch seen in the perceptron implies the wekear assumption of monotonicity: that any increase 
in our feature must either always cause an increase in our model’s output (if the corresponding weight is 
positive), or always cause a decrease in our model’s output (if the corresponding weight is negative).

This approach has an obviously limit: say for example that we want to predict probability of death based on 
body temperature. For individuals with a body temperature above 37°C , higher temperatures indicate greater 
risk. However, for individuals with body temperatures below 37° C, higher temperatures indicate lower risk! In 
this case, we might resolve the problem with some clever preprocessing. Namely, we might use the distance 
from 37°C as our feature.

We can overcome these limitations of linear models and handle a more general class of functions by 
incorporating one or more hidden layers between input and output. Moreover we can introduce non linearity 
also in the activation function (as we see soon). In this way the output became a complicated function of the 
input variables and so we lose the linearity of our model.



Multilayer 

perceptron
• The first example of a NN is the 

Multilayer perceptron, this is a net 

of fully connected perceptron

• In the schematical view on the 

right every circle is a perceptron 

with a fixed number of inputs and 

outputs

• In the example we have an input 

layer, only one hidden layer and 

an output layer



Multilayer 

perceptron

• For every line we have a weight.

• In this case where we have 2 input 

variables, an hidden layer with size 2, 

and 2 outputs, so:

• (#neurons in the next layer * 

#variables) + #neurons in the next 

layer= 6 weights (between input layer 

and hidden layer)

• #neurons in the next layer* hidden 

layer size+ #neurons in the next layer 

= 6 weights (between hidden layer 

and output layer)

• In total 12 weights



Activation Functions

• The activation function provides to the 
activation or not of a node.

• The functions are in general 
differentiable operators to transform the 
inputs to outputs

• Most of them provides to add non-
linearity to the model

• The activation function σ has as input the 
weighted sum of the input variables x, 
added with the bias b



Rectified Linear Unit (ReLU)

• One the most popular non linear 
activation function is the rectified linear 
unit (ReLU).

• It provides a non linear 
transformation and returns the max value 
between the input and 0.



Rectified Linear Unit (ReLU)

• The ReLU function is also differentiable in 
R-{0} and its derivative is the Heaviside 
function.

• In case the input is equal to zero, it is 
used the left-side derivative.



Scaled Exponential Linear Unit (SELU)

• Another possible choice is the Scaled 
Exponential Linear Unit (SELU).

• The functions depends by two 
parameters and the equation is the 
following one:



Scaled Exponential Linear Unit (SELU)

• The function is not differentiable in zero.

• Also here is convention to use the left-
side value of its derivative.



Sigmoid 

Function
• Sigmoid function:

• Derivative Sigmoid function:



• Tanh function:

• Derivative Tanh function:

Tanh

Function



Multilayer 

perceptron

• In this case there are two outputs.

• The hidden layer output h is function of 

the input x:

• The output o is a different function of its 

input, i.e. h:



Multilayer 

perceptron

• How can we interpret the two values?

• In classification problem the goal is to 

understand how the input x is related 

to the belonging to a certain class.

• The output o could be seen as the 

vector of probabilities of belonging to 

each class.

• However this is not straightforward:



Softmax

Regression

• However this is not straightforward:

• Softmax activation function:



Parametrization Cost
• Fully-connected layers are fundamental in the neural 

network building up process.

• Adding neurons to a network layer or adding a layer makes our 
model more complex and capable of facing a wide range of 
problems.

• The complexity of the model, however, faces directly with 
computational time, which could be extremely high.



Parametrization Cost
• Suppose to have a hidden layer 

with d input and q outputs.

• The parametrization cost is

• It is possible to reduce the 
parametrization cost introducing 
an hyperparameter n, in order to 
have the parametrization cost:

#neurons = q



Vectorization for Minibatches

• Input

• Weights

• Bias

• Outputs



Loss function
• To measure the quality of our predicted probabilities we need a loss 

function.

• We will suppose that the entire dataset (or the batch we are 
considering) has n examples {X,Y}.

• The i-th {X,Y} entry is made by the feature vector x-ith and the one-
hot label vector y-ith.



Loss function
• It is possible to compare the predicted class with the real class by 

checking how probable the actual classes are according to out 
model.

• According to the maximum likelihood estimation, we want to 
maximize P(Y|X), or minimize the negative log-likelihood.



Cross-entropy loss function
• The negative log-likelihood is equal to:

• Where l(y,ypred) is the loss function, also called cross-entropy, defined 
as:



Cross-entropy loss function
• The cross-entropy loss function is a common choice in classification 

problems.

• Moreover it is generalizable when the vector of label y doesn't 
contain only binary entries like (1,0,0), but is a generic probability 
vector, (0.15,0.8,0.05).

• This is the case where we observe not just a single outcome but an 
entire distribution over outcomes.



Cross-entropy loss function and softmax
• The softmax and the corresponding loss are very common. What is 

the corresponding loss function?



Cross-entropy loss function and softmax
• The softmax and the corresponding loss are very common. What is the 

corresponding loss function?

• To understand better let's have a look at the derivative w.r.t. any output o 
i-th:

• The derivative is the difference between the probability assigned by our 
model, as expressed by the softmax operation, and the y true vector. 



Examples of other loss functions
• Mean Squared Error (MSE)/ Quadratic Loss/ L2:

• Mean Absolute Error (MAE)/ L1 Loss:

• Mean Bias Error (MBE):



Validation 

procedure
• When we want to optimize our 

model, in principle we should 

not touch the test data, there is 

a risk that we might overfit it.

• Ideally we would touch our test 

data only once to assess the 

very best model

• The common practice to 

address this problem is to split 

our data three ways, 

incorporating a validation 

dataset (or validation set) in 

addition to the training and test 

datasets.



Training description

• The main idea of the model training is to iterate over the network 
different times (number of epochs).

• In each epoch is selected from the test dataset k 
stochastic minibatches of n (batchsize) entries.

• We then compute the derivative (gradient) of the average loss on 
the minibatch regarding the model parameters. Finally, we multiply 
the gradient by a predetermined positive value η (learning rate) 
and subtract the resulting term from the current parameter values.

• The epoch ends after k iterations, i.e. all over the k batches.



Minibatch stochastic gradient descent
• We iteratively sample random minibatches from the data, updating the 

parameters in the direction of the negative gradient.

• Backward propagation of the training, parameters updating:



Hyperparameters

• An hyperparameter is an internal parameter of the model that 

must be fixed before training, such parameter influences the 

fit procedure in a way not well known a priori.

• So we cannot know which value is perfect for our model and 

we need to try different reasonably values to figure out which 

one is the best.

• No Free Lunch theorem: no single classifier works best 

across all possible scenarios



Hyperparameters

With a DNN we can change a lot of parameters, most of which we just describe below:

• The loss function

• The activation function of every layer

• The learning rate

• The number of epochs

• The number of hidden layers and the number of cells in them

• .. and many others

The hyperparameters can change from an algorithm to another, here we mentioned only the main 

parameters of a DNN.



Learning rate

• Adjusting the learning rate is often just as important as the actual algorithm

• If it is too large, optimization diverges, if it is too small, it takes too long to train or we 

end up with a suboptimal result

• If the learning rate remains large we may simply end up bouncing around the minimum 

and thus not reach optimality

• What we can do: we can decide to start from a reasonable value for the learning rate 

and then use the method implemented in Keras: "ReduceLROnPlateau". It reduce the 

learning rate when a monitor, decided by us, has stopped improving. In this way we can 

obtain a large LR value at the begin of the training with a progressive reduction when 

we are approaching to the optimized model.



Number of epochs

• The epoch is a complete step of the training, it includes the evaluation 

and the consecutive updating of the weights

• The number of epochs is a delicate choice, because a large number can 

induce our model to an overfitting problem. Meanwhile a too small value 

can lead to an under fitting problem

• To avoid a wrong choice we can use the 'EarlyStopping', also 

implemented by Keras. This method allows to stop the training when a 

monitor, decided by us (for example: loss function) has stopped 

improving.



Hidden layers

• As seen before, the number of hidden layers add complexity to our model.

• Adding hidden layers make our algorithm more performing, but at the same 

time we lead it to an overfitting problem

• Another crucial factor is the number of cells in the hidden layer, also in this case 

a lot of cells increase the complexity of the model and increase the risk to an 

overfitting problem

• This choice has to be done carefully, it is the most difficult one and only 

comparing the evaluation metrics between different approaches we can know 

which is the best one.



Overfitting problem
• The more complex the model is, the higher 

is the risk of overfitting.

• Here a clear example of overfittig, the train 

loss keeps going down while the validation 

loss get worse. It is always important to 

split the training in train and validation set 

and to have a clear picture of the train 

history.

• In order to avoid overfitting and make the 

training stable we have different approach.



Overfitting problem
• In order to avoid overfitting and make 

the training stable we have different 

approach:

1. Introduce a callback function that stops 

the training if the validation loss get worse 

and restore the best parameters (Early 

Stop function). Reduce overtraining and 

time needed for the training.

Stop and restore the parameters



Overfitting problem
• In order to avoid overfitting and make 

the training stable we have different 

approach:

1. Introduce a callback function that stops 

the training if the validation loss get worse 

and restore the best parameters (Early 

Stop function). Reduce overtraining and 

time needed for the training.

2. "Weight Decay": introduce penalty terms 

in the loss.



Overfitting problem
• In order to avoid overfitting and make 

the training stable we have different 

approach:

1. Introduce a callback function that stops 

the training if the validation loss get worse 

and restore the best parameters (Early 

Stop function). Reduce overtraining and 

time needed for the training.

2. "Weight Decay": introduce penalty terms 

in the loss.

3. "Dropout": injecting noise while 

computing each internal layer during 

forward propagation.

The calculation of the outputs no longer depends 
on h2 or h3 and their respective gradient also 
vanishes when performing backpropagation.
In this way, the calculation of the output layer 
cannot be overly dependent on any one element 
of (h1,…,h5).



Evaluation metrics

• The idea of building machine learning models works on a constructive feedback principle. You

build a model, get feedback from metrics, make improvements and continue until you achieve a

desirable accuracy

• Evaluation metrics explain the performance of a model. An important aspect of evaluation

metrics is their capability to discriminate among model results

• Simply building a predictive model is not your motive. It’s about creating and selecting a model

which gives high accuracy on out of sample data. Hence, it is crucial to check the accuracy of

your model prior to computing predicted values.



Confusion 

matrix
• The confusion matrix helps us 

visualize whether the model is 
"confused" in discriminating 
between two or more classes.

• In the figure we have an 
example of binary model and 
the corresponding confusion 
matrix.

• The 4 elements of the matrix 
represent the 4 metrics that 
count the number of correct 
and incorrect predictions the 
model made.



Accuracy

• The most famous metrics is the accuracy defined as the ratio between 

the number of correct predictions to the total number of predictions

• Accuracy values range between 0 and 1. Obviously an accuracy values 

near to 1 means that our model fits well the datasets

• It is important to stress that a good accuracy value on the training 

dataset does not imply a good discrimination on the test dataset



Precision

• The precision is calculated as the ratio between the number of Positive samples 

correctly classified to the total number of samples classified as Positive (either correctly 

or incorrectly). The precision measures the model's accuracy in classifying a sample as 

positive.

• When the model makes many incorrect Positive classifications, or few correct Positive

classifications, this increases the denominator and makes the precision small. On the 

other hand, the precision is high when:

• The model makes many correct Positive classifications (maximize True Positive).

• The model makes fewer incorrect Positive classifications (minimize False Positive).



Recall

• The recall is calculated as the ratio between the number of Positive samples correctly 

classified as Positive to the total number of Positive samples.

• The recall cares only about how the positive samples are classified. This is independent 

of how the negative samples are classified, e.g. for the precision.

• The decision of whether to use precision or recall depends on the type of problem 

being solved. If the goal is to detect all the positive samples (without caring whether 

negative samples would be misclassified as positive), then use recall. Use precision if 

the problem is sensitive to classifying a sample as Positive in general, i.e. including 

Negative samples that were falsely classified as Positive.



F1 score

• F1-Score is the harmonic mean of precision and recall values for a 

classification problem.

• It takes the harmonic mean because punishes extreme values more.

• For example, if we have a model with Precision = 0 and Recall =1, it is 

clear that this result comes from a dumb classifier which just ignores the 

input and just predicts one of the classes as output. In this example we 

will have a F1 score equal to 0



AUC-ROC

• A Receiver Operating 

Characteristic curve, or ROC 

curve, is a plot that illustrates 

the true positive rate against the 

false positive rate

• The metric connected to the 

ROC curve is th area under the 

curve AUC. An AUC near to 1 

indicates a ROC curve near to 

the best result, an AUC near to 0 

indicates a random classifier.



Tutorial NN
• This afternoon we will see how to work with the NNs. 

We are going to use keras library: keras guide .
>>import keras

• We will use sequential models:

>>model = keras.models.Sequential()

• So, we can add how many layers we want using:
>>model.add(keras.layers.Dense(...))

• Alternatively, we can insert all layers when we 
initialize the model.

• With keras.layers we can access at different types of 
layers, we will use Dense layer (a fully connected 
layer) and Dropout layer.

• Into the () we will insert the numbers of cells and the 
activation function for Dense, while for the Dropout 
we'll insert the dropout rate.

https://keras.io/getting_started/


Tutorial NN

• Once the model is completed, we have to compile and train it:

>>model.compile(loss='' , optimizer = .., metrics= …)

>>history = model.fit(X_train, y_train, validation_split=%, epochs=#, batch_size=#,verbose=(0,1))

• The fit method returns information on each epoch, activating the verbose variable we also can 

see the results of each epoch during the training

• Finally, we will use keras.callbacks to introduce the early stop and the learning rate reduction in our 

models

• More on that this afternoon!



References

• Raschka, Sebastian. Python machine learning. Packt publishing ltd, 2015.

• Dive Into Deep Learning

http://d2l.ai/chapter_preface/index.html

• Keras Guide

Developer guides (keras.io)

http://d2l.ai/chapter_preface/index.html
https://keras.io/guides/

