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INTRODUCTION TO
THE MACHINE
LEARNING

* In this age of modern technology, there is one
resource that we have in abundance: a large
amount of structured and unstructured data.

* Inthe second half of the twentieth century, machine
learning evolved as a subfield of artificial
intelligence that involved the development of self-
learning algorithms to gain knowledge from that
data in order to make predictions.

« Several everyday life applications
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Machine
Learning Tasks

* Machine learning algorithms
build a model based on sample
data, known as "training data”,
in order to make predictions or
decisions without being

explicitly programmed to do so.
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Supervised
Learning

* The main goal in supervised
learning is to learn a model from
labeled training data that allows
us to make predictions about
unseen or future data.
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Supervised Learning:
Classification

The goal of the classification is to predict the
categorical class labels of new instances based on
past observations.

Handwritten
character
recognition: multi-
class classification

Email Spam:
binary
classification
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Supervised R
Learning: Regression




Reinforcement
Learning

The main goal of the
reinforcement learning is
to develop a system that
improves its performance
based on interactions

with the environment.
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Unsupervised Learning

/

Clustering: organize a pile
of information into
meaningful subgroups
(clusters) without having
any prior knowledge of
their group memberships.
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Supervised Learning
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Supervised Machine Learning Systems: a

Roadmap
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Supervised
Learning
Techniques

* Perceptron

« ADALINE

* Logistic Regression

* Artificial neural network

« Support Vector Machine

e Decision Trees

» K-nearest neighbors




Natural
Neurons

* In order to show how artificial
neurons works, it is necessary to
figure out how natural neurons
works.

Input
Signals

Dendrites

Cell nucleus

Myelin sheath

Axon
terminals

Output
Signals




McCulloch-Pitts (MCP) Neuron

@ The first artificial representation of a brain cell is the so-
called McCulloch-Pitts (MCP) neuron introduced in 1943.

yed{0,1}
@ McCulloch and Pitts described a brain cell as a logic gate
with binary inputs and output; xn e {0,1}
X1 \/‘"“\
This gate collects and integrated the set of signals arriving -y e{0,1}

L2
fa at cell body; . /\ /
5 »

AND function

...... If the value of the integrated signals exceeds a given 2
E threshold, an output signal is generated and passed to T+ a2 = Z r; =2
other artificial cells. i=1




McCulloch-
Pitts Neuron:
Limitations

x

What about non-boolean
(say, real) inputs?

Are all inputs equal? What if
we want to assign more
importance to some inputs?

Do we always need to hand
code the threshold?




Rosenblatt’s
Perceptron

« Overcoming the limitations of the MCP
neuron, Frank Rosenblatt, an American
psychologist, proposed the classical
perception model, the mighty artificial
neuron, in 1958. It is more generalized
computational model than the McCulloch-Pitts
neuron where weights and thresholds can be
learnt over time.




Rosenblatt’s Perceptron

e [t implements a decision function ¢(z);

e 2 is a linear combination of input values x and a weight vector w:

Z=wW1T1+ ...+ WnHTm

w1 I
w2 1)

1 z >0

—1 otherwaise
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Rosenblatt’s Perceptron

) can be moved to the left side of the equation and define a weight-zero
as wg = —6H and g = 1 in order to write =z in a more compact way:

Z = WwWoro +wW1r1 + ...+ W T = wa

@(:):{ 1 if=2>0

—1 otherwise

In machine learning the value wg = —6@ is called bias unit.

Inputs  Weights Net input Activation
function function

output

&




Rosenblatt's
Perceptron as
Binary Classifier

A classifier corresponds to a
decision boundary, or a
hyperplane such that the
positive examples lie on one
side, and negative examples lie
on the other side.




Rosenblatt's
Perceptron:
Learning rule

* Rosenblatt's Perceptron extends
MCP neuron with learning
capabilities by means an
appropriate training algorithm

@ Initialise the weights to 0 or small random numbers.

@ For each training sample 2

©® Compute the output value 7.
@ Update weights,

w; = wj + Aw;

How to compute Aw;:
Awj = 77(y(i) — ;z](i));lfg.i)
@ 7) is named learning rate (a constant between 0.0 and 1.0);

o y(V is the true class label of the i-th training sample;

o (V) is the predict class label.
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Train a Rosenblatt's Perceptron: Example

Example for a two-dimensional dataset:

Awgy = 1(y"Y — output™)

Aw;, = n(y® — output(i))xgi)

Awy = n(y® — output(i))xg)

In the case that the perceptron predicts the class label correctly:

Aw; =n(-1 - (-1))z}” =0
Aw; =n(1 — 1)z, @) = O

In the case of a wrong prediction:

Aw; =n(l — (—1))x<z) = 277:1:( 2




Rosenblatt's
Perceptron:
Final scheme

* The learning algorithm passes
over the training dataset until all
the input vectors are classified
correctly (until it achieves
convergence)
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Net input
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Rosenblatt's Perceptron:
Convergence

* The perceptron will never get to the state with all the
input vectors classified correctly (it will never
converge) if the training set is not linearly separable,
i.e. if the positive examples cannot be separated from
the negative examples by a hyperplane.

 If the training set is linearly separable, then the
perceptron is guaranteed to converge.

 If the two classes can't be separated by a linear decision
boundary, we can set a maximum number of passes
over the training dataset (epochs) and/or a threshold
for the number of tolerated misclassifications—the
perceptron would never stop updating the weights
otherwise.

<]
<]
©

©

(S]
©
©
©

!
1

B
Linearly separable

>

Not linearly separable

v

v

v




Not Linearly
Separable
Dataset

 Kernel Function

» Deep Neural Networks
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Adaptive Linear
Neuron: Adaline

* Published by Bernard Widrow and Tedd Ho few years after
Frank Rosenblatt's perceptron algorithm (1960);

* It can be considered as an improvement of the
perceptron:

« Adaline uses continuous predicted values to learn
the model weights, which is more “powerful” since it
tells us by “how much” we were right or wrong
(activation function is the identity function for
Adaline)

« Adaline uses the gradient descent to find the most
suitable weights that minimize the error to classify
the training data samples.

=@—~ Output

Activation Threshold
function function

Adaptive Linear Neuron (Adaline)

dp(wlx)=wlx




Minimizing Cost Functions
with Gradient Descent

* One of the key ingredients of supervised
machine learning algorithms is a defined
objective function that is to be optimized
during the learning process.

e |In the case of Adaline, we can define the
cost function, J, to learn the weights as the
sum of squared errors (SSE) between the
calculated outcome and the true class

label:

J(w) =13, (yD — ¢(21))’

A
Initial

weight \

Gradient

J(w)
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Gradient Descent: Learning Rate

* 1 isthe learning rate constant that determines the size of the steps

Big learning rate Small learning rate

With a high learning rate we can cover more W|th.a very low Iea.rnmg r?te’ we can ,

ground each step (so it learns faster), but we conf!dent.ly move in the d|rect|pn (?f the negative

risk overshooting the lowest point since the gradient since we are re.caICl.JIat.lng It frequerjtly,

slope of the hill is constantly changing. bu’F ca!culatmg the gradient is time-consuming,
so it will take us a very long time to get to the
bottom.

T
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Scaling Data

 Feature data can have different scales and ranges.

* This can be a problem for gradient descent:
« The weights updated is proportional to feature value, so, with features being on different scales,
certain weights may update faster than others

« Itis difficult to select the most suitable learning rate value

* If we choice the value based on the input value having the smallest range, small learning rate it takes ages for the

large range to converge.

 if we choice high value for learning rate, the gradient descent might not converge for small ranges.

Having features on a similar scale can help the gradient descent converge more
quickly towards the minima.

 Feature scaling is a method used to normalize the range of features of data.

T




Scaling Data:
Normalization

* Normalization is a scaling technique in which
values are shifted and rescaled so that they
end up ranging between 0 and 1.

* The general formula for a min-max of [0, 1] is
given as the top equation

e Another form of normalization is called
mean-normalization. The formula is the
equation in the bottom.

r—min(x)

max(x)—min(x)

r—avg(x)

max(x)—min(x)




. » Feature standardization makes the values of each feature
Scallng Data' in the data have zero-mean (when subtracting the mean in
¢ the numerator) and unit-variance.

» The general method of calculation is to determine the

Standa«rdlzatlon distribution mean and standard deviation for each feature.

Next we subtract the mean from each feature. Then we
divide the values (mean is already subtracted) of each
feature by its standard deviation.
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Logistic Regression

* Logistic regression is a binary classifier

» The output variable Y has two possible values 0 and 1

 Logistic regression is a probabilistic model

* its goal is to model the probability of the positive class (i.e., the class that we want to predict), typically
class 1.

* Classification
« To compute the conditional probability of the response Y, given the input variables X, Pr(Y|X')

« Consider a single input observation x, which we will represent by a vector of features [x;, x5,..., X,] , we
want to know the probability that this observation x belongs to the positive class 1, P(Y=1|x).

T
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Logistic Regression

« To explain the idea behind logistic regression as
probabilistic model for binary classification let’s first 1
introduce the odds in favor of a particular event:

« The logit function is the logarithm of the odds logit(p) = log

 Logit function takes input values in range 0 and 1 and

transforms them to values over the entire real-number  (0g8t(p(y = 1|x)}) = woZo + . . . + WrTm

m
range, which we can use to express a linear =D imo WiTi = W
relationship between feature values and the log-odds

T




Logistic Regression:
Sigmoid Function

« We are actually interested in predicting the
probability that a certain example belongs to a Lol

particular class, which is the inverse form of the logit
function.
2 0.5 4
* Itis also called the logistic sigmoid function, which J
is sometimes simply abbreviated to sigmoid oo

function due to its characteristic S-shape.

¢(2)




Logistic Regression: ﬁ
Decision Boudary J

* The predicted probability can then simply be
converted into a binary outcome via a quantizer
(unit step function):

g_{l if ¢(2) > 0.5

0 otherwise




Logistic Regression:
Scheme

 In Adaline, we used the identity function
¢(z) = z as activation function. In logistic
regression, this activation function simply
becomes the sigmoid function

« There are many applications where we are
not only interested in the predicted class
labels, but where the estimation of the
class-membership probability is particularly
useful

—@_ Predicted class label

Threshold
activation function
function

Adaptive Linear Neuron (Adaline)

function

_@_. Predicted class label

| Threshold
function

Conditional probability that a
-------- sample belongs to class | given its
input vector x




Logistic
Regression:
Learning Rule

* Using Logistic Regression we

should maximize the likelihood
L.

 Logistic regression uses the
gradient descent after
converting the log-likelihood
function in the cost functionJ

L(w)=P(y|x;w)=[T"_; P(y@[z®;w)=TTr_; (6(z@)*" (1—p(z@)1-¥*)
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One-~vs~-Rest

* The One-vs-Rest strategy splits a
multi-class classification into one
binary classification problem
per class.

One-vs-all (one-vs-rest)
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A Supervised
Machine
Learning
System
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Train-~Test Splitting

Machine
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Metrics

PREDICTED VALUE

Positive Negative

Positive

ACTUAL
VALUE
Negative
_ TP+TN
Accuracy = #pr P TNTEN




Over/Under-
Fitting

« Overfitting is a common problem
in machine learning, where a
model performs well on training
data but does not generalize well
to unseen data (test data).

« Underfitting means that our
model is not complex enough to
capture the pattern in the training
data well and therefore also suffers
from low performance on unseen
data.

Xy

§,

Q@+
Gg — +
> - O
Underfitting *1 Good X1 Overfitting %1
(high bias) compromise (high variance)
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Input Hidden Layer Output

What’s Next?




