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The INFN CSN-5 APEIRON Project Goals

» Offer hardware and software support for the execution on
a system of multiple interconnected FPGAs of
applications developed according to a dataflow
programming model

» Map the directed graph of tasks on the distributed FPGA
system and offer runtime support for the execution.

= Allow users with no experience in hardware design
tools to develop their applications on such distributed
FPGA-based platforms
— Tasks are implemented in C++ using High Level Synthesis

tools.

— Simple Send/Receive C++ communication API.




APEIRON rationale

Abstract Processing Environment for Intelligent Read-Out systems based on

Neural networks
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Input data from several different channels (data sources,
detectors/sub-detectors).

Data streams from different channels recombined
through the processing layers using a low-latency,
modular and scalable network infrastructure

Distributed online processing on heterogeneous
computing devices in n subsequent layers.

Features extraction will occur in the first NN
layers on FPGAs

More resource-demanding NN layers can
be implemented in subsequent processing layers.

Classification produced by the NN in last processing layer
(e.g. pid) will be input for the trigger processor/storage
online data reduction stage for triggerless systems



Why FPGA are good to implement NN for real-time inference
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Dataflow Programming Model is Natural on FPGA
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Dataflow Programming Model is Natural on FPGA

* Pipelined design can potentially produce ° ) I

a new output each clock cycle - >x
 The greater the number of pipeline

> accumulator

ACC

stages, the greater the latency = - =

* Initiation interval (Il): Number of clock D MUL ADD ROR
cycles before the function can accept FPGA datapath
new input data. The lower, the higher the
throughput Latency (L)

* Once latency is overcome a pipelined
design yields one output per Il clock
cycles, irrespective of the number of
pipeline stages (parallelism between P
stages)

Initiation
interval/gap (/)

DMA

ST

* Increasing throughput through .-..

parallelism (replicate the number of
pipelines)
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igh Level Synthesis: write software, think hardware

HLS: C based design entry

High level instructions transposed to hardware components
€..g. an array becomes an on-chip RAM

Code annotations (pragmas) can “guide" the compiler

e.g. array partition to access stored data in parallel

Design steps '

‘camiston | High Level Synthesis

=  synthesis

= Co-simulation :

Build tailored/custom processors

4
R

P o Fast verification of the algorithm

Kernel

{

Detailed report about generated digital circuit

Pragmas determines circuit topology

HLS flow representation by Xilinx




APEIRON HLS C++ Communication Primitives

CPU

= APEIRON C++ HLS API
— send (msg, size, dest node, task id, ch 1d)
— receive (ch 1d)
Where :

dest node are the n-Dim coordinates of the destination
node (FPGA) in a n-Dim torus network.

task id is the local-to-node receiving task (kernel)
identifier (0-3, 0-7).

ch id is the local-to-task receiving fifo (channel)
identifier (0-127).

FPGA

ROUTING IP

HOST
INTERFACE

EXTERNAL
MEMORY




APEIRON HW IPs for low-latency FPGA communication

IPs implementing a direct network enabling T
low-latency communication between processing tasks o oUTING 1P
deployed: HosT

INTERFACE

- on the same FPGA (intra-node comm.)
- on different FPGAs (inter-node comm.)

= Host Interface IP: Interface the FPGA logic with the
host through the system bus. HLS

— PCI Express Gen3 - Gen4

= Network IP: Network channels and Application-
dependent 1/0

— APElink 32 Gbps = 64/100 Gbps
— UDP/IP over 1/10 GbE = 40/100 GbE
= Routing IP: Routing of intra-node and inter-node o

1 —e— ExaNest intra-QFDB

messages between processing tasks on FPGA. B sl et

10 1 —e— HLS P 9 -
~&— Hardware performance counters o — s

—8— ExaNeSt MPI intra-QFDB
8 1 —@— ExaNeSt MPI inter-QFDB

T “ EXTERNAL
HLsp-1 MEMORY
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Latency [us]

Bandwidth [Gbps]
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APEIRON - How to use it

= For Xilinx FPGAs, APEIRON leverages the
Vitis flow to generate the bitstream

= HLS kernels are written in C++, there are no
particular restrictions, apart from the top-
level interfaces (channels)

= A YAML configuration file is used to describe
the kernels interconnection topology,
specifying how many input/output channels
they have

FPGA

ROUTING IP

CPU

HOST
INTERFACE

EXTERNAL
MEMORY
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1
- 1
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APEIRON use case: Partial Particle ID with the NA62 RICH

Located at the CERN SPS
= Measure rare kaon decay:

— k->mvv with BR(k>mvv) = (8.4 1.0) x 1011 Geamgle @ /
= Nominal event rate at LO: 10MHz

= Number of Cherenkov rings is a good candidate to
improve LO decisions: can we achieve required
throughput with a good accuracy’?

Mirror Mosaic (17 m focal length)
17 m |

Vessel diameter4—3.4m
Volume ~ 200 m3 Beam Pipe

2 x~1000 PM

—
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Rings detection - Dense model

Fully Connected

= |nput: 64 hits per event

Architecture: 3 fully connected layers
Output: 4 classes (0, 1, 2, 3+ rings per event)

Qkeras, quantization aware training:

— ~75% average accuracy with low resource usage:
LUT 14%, DSP 2%, BRAM 0% (VCU118)

Latency: 22 cycles @ 150MHz
Initiation Interval (I1): 8 cycles

Confusion Matrix_validation data

0.45

True label

/ -0.30
0 -0.15
i)
2
3+ 6 i é 3 0.00
Classification Predicted label
fully-connected gutpuL 1F TensorFlow ® hls 4 ml ® vivapo His mp 'Pintegration in

LOTP+ infrastructure
https://fastmachinelearning.org/hlsaml/
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Rings detection - Convolutional model

zero-padding

= [nput: PMT channels into image 16x16 pixels
= Architecture: 2 conv layers and 2 dense l
= Qutput: 4 classes (0, 1, 2, 3+ rings per event)
= Qkeras, quantization aware training:

— ~83% average accuracy with low footprint: LUT 5.2%, 4

Input image

(e
M’;‘
0 0 0 2D KRS 1
FF 1.5%, DSP 4.8%, BRAM 0.05% (Alveo U200) convolutional pooling 4 Kk
NN 3+
. 2D S~
= Latency. 388 CyCIeS @ 220M HZ convolutional dense Classification
.y n . NN + RelLu fully-connected output
= |nitiation Interval (I1): 369 cycles
Counts Normalized per true Label Counts Normalized per prediction
Counts Counts Normalized (horizontal) (vertical)
0{ 15799 10863 175 1 o{ 0.16 0.11 0.0018 1e-05 0 0.4 0.0065 3.7e-05 0 0.15 0.016 0.015
_ 11 36 62249 5231 1 _ 11 0.00036 0.62 0.052 1e-05 | _ 14 0.00053 1.5e-05 | _ 11 0.015
3 a 3 P
© © © ©
18] L (2] L]
2 2 2 =
Fal o 373 4904 18 Fol o 0.0037 0.049 000018 | "2/ 0 00034 | F21 o 0.0051 0.46 0.27
34 0 0 304 46 3 0 0 0.003  0.00046 34 0 0 0.13 3 0 0 0.029
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
Predicted label Predicted label

Predicted label
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Predicted label
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Convolutional model — Kernel replication

Throughput is not enough to sustain L0 rate, but we can replicate the network
multiple times, also on multiple devices if necessary.

- Imagify 1 |=—-»| NNet1 |=—

—»| Imagify 2 | =-»]| NNet2 |-—

|:> Dispatcher |

NNet 11

l

—»| Imagify 11

> I mgp_out_1

NNet 12 > I mgp_out_2

- Imagify 12

|

¥ mgp_out_3
> I mgp_out_4

> I mgp_out_5
> I mgp_out 6

Resources usage for 12 replicas: W map_out 7

> Ik mgp_out_8

¢ I_U T 74% k- mgp_out_9

> | mgp_out_10

[} o) > I mgp_out_ 11
FF17%

* DPS61% ¥ e

> I mgp_in_

° BRAM 1 4% ¥ mgp_in_2

> I mgp_in_3
Processing time @220MHz: 137 ns ey
per event il
> I-mgp_in_
> I mgp_in_9
- mgp_in_.
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Energy efficiency

Low energy consumption compared to other devices (e.g. TDP for
GPUs is in the order of hundreds of Watts)

Device xlinx_u200_gen3x16_xdma_base_1

h — 12V Auiliary
18 —— 12V PCle
] — | rrternal
Average device pawer 171
S 161
151 5 ]
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E 101 131
3 ] b
g 73 12
> 11-
2.51 ]
e DIMM 0
0 45 e DIMM 1
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40 ] — DIMM 2
o 35 7 — DIMM 3
B 12V Auiliary B 12VPCle B Internal » 1 —— FPGA
5 301
= 3 — Fan
5 25-: —— PCB Bottormn Frort
[« N
g 207 —— PCB Top Front
= 15 E PCB Top Rear
10 — asFPo
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= Backup Slides

Fare clic per inserire testo
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APEIRON Workflow for Neural Network Tasks

1.Bottom-up Fully connected, convolutional, activations, precision
2.Design Space Exploration Size, random data and weights, easy/corner cases

3.Automation Unassisted operations (e.g. scans)

=—p- HARDWARE DESCRIPTION

Kernel code

Test bench Script

data parameters = HLS REPORT

m C/C++ code for a complete control over implementation

Automatic conversion using HLS4ML"* library

* hitps://github.com/fastmachinelearning/hls4ml
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Resources usage

Post Route Utilization

LuT
LUTRAM
FF
BRAM
URAM
DSP

BUFG
MMCM
PLL
PCle

6%
27%
14%
2%

23%

3%
10%
T%
17%

T78%

61%

67 %

MName
Platform
User Budget

L4

25

50

Used Resources
Utilization ( Unused Resources
funnel (1)

4

funnel_1
~ memaory_reader (1)
memaory_reader_1
shunter (1)
shunter_1
top_nnet_top_nnet (12)

4

<

top_nnet_1
top_nnet_10
top_nnet_11
top_nnet_12
top_nnet_2
top_nnet_3
top_nnet_4
top_nnet_5
top_nnet_6&
top_nnet_7
top_nnet_8
top_nnet_9

LUT

15.68%
100.00%
73.64%
26,36%
0.14%
0.14%
0.12%
0.12%
0.10%
0.10%
73.27%
6.14%
6.11%
6.13%
6.10%
6,09%
6.11%
6.12%
6.10%
6,09%
6.10%
6.10%
6,08%

LUTAsMem

2.92%
100.00%
3.62%
96.38%
0.06%
0.06%
0.05%
0.05%
0.00%
0.00%
3.51%
0.29%
0.29%
0.29%
0.29%
0.29%
0.29%
0.29%
0.29%
0.29%
0.29%
0.29%
0.29%

REG

12.01%
100.00%
17.00%
823.00%
0.08%
0.08%
0.08%
0.08%
0.13%
0.13%
16.71%
1.39%
1.39%
1.39%
1.39%
1.39%
1.39%
1.39%
1.39%
1.39%
1.39%
1.39%
1.39%

BRAM

12,82%
100,00%
1.38%
98.62%
0,00%
0.00%
0.11%
0.11%
0.00%
0,00%
1.27%
0.11%
0.11%
0.11%
0.11%
0.11%
011%
0.11%
0.11%
011%
0.11%
0.11%
011%

URAM
2,08%
100,00%
0.00%
100.00%
0.00%
0.00%
0.00%
0,00%
0.00%
0.00%
0,00%
0.00%
0.00%
0,00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%

DsP

0.10%
100.00%
60.94%
39.06%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
60.94%
5.08%
5.08%
5.08%
5.08%
5.08%
5.08%
5.08%
5.08%
5.08%
5.08%
5.08%
5.08%
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True label

Solo i primi 100k

Counts
15799 10863 175 1
36 62249 5231 1
0 373 4904 18
0 0 304 16
0 1 2 3

Predicted label

True label

Counts Normalized

Predicted label

0.16 0.11  0.0018  1e-05

| 0.00036 0.052  1e-05
0 0.0037  0.049  0.00018
0 0 0.003  0.00046
0 1 2 3

True label

1 0.00053

Counts Normalized per true Label
(horizontal)

0.4 0.0065  3.7e-05

0 1 2 3
Predicted label

True label

Counts Normalized per prediction

(vertical)
0.15 0.016 0.015
0.49 0.015
0 0.0051 0.46 0.27
0 0 0.029
0 1 2

Predicted label
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Tutti gli eventi

Counts Normalized per true Label Counts Normalized per prediction
Counts Counts Normalized (horizontal) (vertical)

01 123678 95146 2803 32 0{ 0.13 0.099  0.0029 3.3e-05 0 0.013  0.00014 0 0.14 0.02 0.023
_ 1, 3980 [SYE[LELE 73485 346 _ 11 0.0041 0.077 0.00036 | _ 11 0.00053 | _ 11 0.24
a 3 2 2
© © © o
] V] [1}] L8]
= = ~ 2
Foal 474 13564 62588 308 = 21000049 0.014 0.065 0.00032 | ~ 2{ 0.0062 = 21 0.0037 0.02 0.44 0.22

3{ 38 696 4042 730 3{ 4e-05 0.00072 0.0042 0.00076 37 0.0069 3{ 0.0003  0.001 0.028

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2
Predicted label Predicted label

Predicted label Predicted label
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Veto

e NAG62 Experiment

= ?'_'_'*n = Located at the CERN SPS - /R

7
& = \easure rare kaon decay: Lo o 1 ‘% hﬂﬂl
_ k>mvv with BR(k=STovv) = (8.4+1.0)x 10— B g!m,'
= ~60% of nominal intensity in 2017-18 Wm :

0.12.09 Mab2 Phvysics Handbook Worksha P

data taking, 100% in 2021

Multi-level trigger

= Level-0 (LOTP) HW trigger on FPGA (10MHz -> 1MHz) M —

= Level-1 software trigger running in DAQ farm (IMHz ->  cweces w‘*’- — —
100kHz) LAv12 — "o INER

= Level-2 Vs % - \I —

DAQ chuoo‘; . jﬁ - LTUs *>E

= Data bursts are ~6s long =

= Some detectors primitives, generated from TEL62 Eds | 7 |
readout boards, are sent to LOTP

= LOTP generates trigger with max latency of Ims rdram .

= | 2 trigger run over the complete event information 3?;.-
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