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AI for Design It is a relatively new but active area of research. 
Many applications in, e.g., industrial material, 
molecular and drug design. 

B. Sanchez-Lengeling, A. Aspuru-Guzik. Science 361.6400 (2018): 360-365.

Guo, Kai, et al. Materials Horizons 8.4 (2021): 1153-1172.

Z. Zhou et al., Scientific Reports, vol. 9, no. 1, pp. 1–10, 2019



Experimental Design in NP/HEP 
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● When it comes to designing detectors and accelerators with AI this is an area at its “infancy”. What 
follows uses “detector” as example but applies to both detector and accelerator.

● Typically full detector design is studied once the subsystem prototypes are ready (phase constraints 
from the full detector or outer layers are taken into consideration).

● Need to use advanced simulations which are computationally expensive (Geant). 

● Many parameters (and multiple objective functions): curse of dimensionality [1].

● Entails establishing a procedural body of instructions [2]. 

● The choice of a suitable algorithm is a challenge itself (no free lunch theorem [3]) and always requires 
some degree of customization. 

AI offers SOTA solutions to solve complex optimization problems in an efficient way  

[1] Bellman, Richard. Dynamic programming. Vol. 295. RAND CORP SANTA MONICA CA, 1956.
[2] CF et al. JINST 15.05 (2020): P05009. 

[3] Wolpert, D.H., Macready, W.G., 1997. Trans. Evol. Comp 1, 67–82
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AI/ML gathers observations and suggests new design points in an efficient way 

(AI/ML can also speed-up the simulation/reconstruction stack; cf. Amdahl’s law)



Bayesian Optimization
● BO is a sequential strategy 

developed for global 
optimization.

● After gathering evaluations 
we builds a posterior 
distribution used to 
construct an acquisition 
function.
 

● This cheap function 
determines what is next 
query point.

1. Select a Sample by Optimizing the Acquisition Function.
2. Evaluate the Sample With the Objective Function.
3. Update the Data and, in turn, the Surrogate Function.
4. Go To 1.

t(n) t(n+1)

http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/19/gaussian-processes/

5

http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/19/gaussian-processes/


The Electron Ion Collider 

Luminosity
1033-1034 cm-2s-1

80% polarized 
electrons 5-18 GeV
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80% polarized 
p to Uranium 
41 GeV, 100 to 275 GeV

Credits:scitechdaily
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Will be constructed over ten years at an estimated 
cost between $1.6 and $2.6 billion

Different energy particles move through the fixed field alternating 
linear gradient accelerator. 

 A machine ÿor delvinĀ 
deeper than ever beÿore 
into the buildinĀ blocks 

oÿ matter

● Beams of electrons and high-energy protons or heavier 
atomic nuclei 

● Wide coverage of CoM energy √se-p ~ (20-140) GeV

https://scitechdaily.com/electron-ion-collider-the-future-of-particle-accelerators-is-here/
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Dual RICH: ante proposal
E. Cisbani, A. Del Dotto, CF*, M. Williams et al. JINST 15.05 (2020): P05009

aerogel (4 cm, n(400 nm): 1.02) + 3 mm acrylic filter + gas (1.6 m, n(C2F6): 1.0008)

● Two radiators with different refractive indices for 
continuous momentum coverage. 

● Simulation of detector and processes is 
compute-intensive

● Legacy design from INFN (EICUG2017).
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2 Come up with a smart objective; 
study / characterize properties 
(noise, stats needed etc): 
simulation + reconstruction 

3 Optimization framework (embed convergence criteria)

Analysis + Validation4

principled vs random

Define design parametrization and 
space 

https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf


Multi-Objective Optimization
● The problem becomes challenging when the objectives are of conflict to each other, 

that is, the optimal solution of an objective function is different from that of the 
other. 

● In solving such problems, with or without constraints, they give rise to a trade-off 
optimal solutions, popularly known as Pareto-optimal solutions.  

● Due to the multiplicity in solutions, these problems were proposed to be solved suitably using evolutionary 
algorithms which use a population approach in its search procedure.

● MO-based solutions are helping to reveal important hidden knowledge about a problem – a matter which is 
difficult to achieve otherwise 

● During the proposal we used both evolutionary (1) and bayesian approaches (2). I will describe now (1).

ÿ2

ÿ1
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V. Pareto
 1848-1923

The ECCE Inner Tracker Design Optimization considers simultaneously:

● momentum resolution 
● angular resolution
● Kalman filter efficiency
● (pointing resolution)  
● Mechanical constraints

https://en.wikipedia.org/wiki/Vilfredo_Pareto


Elitist Non-Dominated 
Sorting Genetic 

Population
@(t)

Offspring
Population

@(t+1)

Front

Offspring

Population

[1] Deb, K., et al. "A fast and elitist multiobjective 
genetic algorithm" IEEE transactions on 
evolutionary computation 6.2 (2002): 182-197. 

This is one of the most popular approach 
(>35k citations on google scholar), characterized by:

● Use of an elitist principle
● Explicit diversity preserving mechanism
● Emphasis in non-dominated solutions

The population Rt is classified in non-dominated fronts. 
Not all fronts can be accommodated in the N slots of available in the new 
population Pt+1. We use crowding distance to keep those points in the last 

front that contribute to the highest diversity. 

The crowding distance di of point 
i is a measure of the objective 

space around i which is not 
occupied by any other solution in 

the population. 

i

f1

f2

i+1

i-1

crossover

mutation
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The EIC Detector 
Inner Tracker 

Ongoing R&D that includes in 
the optimization the support 
structure of the inner tracker

Parametrization



Integration during EIC Detector Proposal
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● We want to use these 
algorithms to: (1) steer the 
design and suggest 
parameters that a 
“manual”/brute-force 
optimization will likely miss to 
identify; (2) further optimize 
some particular detector 
technology (see d-RICH 
paper, e.g., optics properties)

● AI allows to capture hidden 
correlations among the 
design parameters.

● All “steps” (physics, detector) 
involved in the AI 
optimization, strong interplay 
between working groups  

Optimization does not mean 
necessarily “fine-tuning”

https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta
https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta
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Computational Resources time taken by GA + sorting

● Used a test problem DTLZ1
● Verified scaling following MN2 and convergence to 

true front
● ~1s/call with 104 size!
● For 11 variables and 3 objectives needs ~ 10000 

evaluations to converge 
~10k CPUhours / pipeline
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“Navigate” Pareto Front
1 Can take a snapshot any time 

during evaluation
2 Updated Pareto Front at time t

3 At each point in the Pareto front 
corresponds a design 

4 Analysis of Objectives (momentum resolution, angular resolution, KF efficiency)
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“Evolution”

● Black points represent the first 
simulation campaign, and a preliminary 
detector concept in phase-I optimization 
which did not have a developed support 
structure;

● Blue points represent the fully 
developed simulations for the final 
ECCE detector proposal concept; red 
points the ongoing R&D for the 
optimization of the support structure. 

● Compared to black, there is an 
improvement in performance in all η bins 
with the exception of the transition 
region, an artifact that depends on the 
fact that black points do not include a 
realistic simulation of the material 
budget in the transition region. 

● In the transition region, it can be also 
appreciated the improvement provided 
by the projective design



Validation 
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Reconstruction Efficiency

D0 invariant mass from semi-inclusive deep 
inelastic scattering

Performance evaluated after optimization process 
(both designs). 

Notice red points are related to an ongoing project 
R&D with a projective support structure for the 
ECCE tracker.   



Novel Aerogel Material aefib
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resolution

stability

Simple Ring Imaging CHerenkov Geant4 based simulation
Aerogel + Optical Fibers 

Gmsh - define geometry and produce mesh 
ElmerGrid - convert the gmsh mesh to elmer compatible mesh 

ElmerSolver - do modeling (solve linear and nonlinear equation) 
Paraview - visualize Elmer Solver and provide a python interface to automate 
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● Aerogels with low refractive indices are very fragile tiles break during 
production and handling, and their installation in detectors.

● To improve the mechanical strength of aerogels, Scintilex developed a 
reinforcement strategy.  The general concept consists of introducing fibers 
into the aerogel that increase mechanical strength, but do not affect the 
optical properties of the aerogel.

● Paper in preparation.

The team: V. Berdnikov, J. Crafts, E. Cisbani, CF, T. Horn, R. Trotta

Aerogel tile with 
random fiber orientation
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Summary
● AI can assist the design and R&D of complex experimental systems by providing more efficient design 

(considering multiple objectives) and optimizing the computing budget needed to achieve that.   

● EIC can be one of the first experiments to be designed with the support of AI. 

● The ECCE consortium is leading these efforts with a multidimensional design and objective spaces. 

● Additional considerations:

○ None ever accomplished a multi-dimensional / multi-objective optimization of the global design, i.e., made by many 
sub-detectors combined together, that can be solved with AI 

○ Costs can be explicitly included during the optimization provided a reliable parametrization)  

○ An intrinsic overhead regards compute expensive simulations + reconstruction/analysis. This can be speeded up 
embedding AI/ML in the SW stack.  

○ Larger populations of design points can be simulated to improve accuracy of the Pareto front in multidimensional 
spaces with AI-based accelerated optimizations.   

Likely future detectors will be designed with the help of AI achieving optimal performance and cost 
reduction. One of the conclusions from the DOE Town Halls on AI for Science on 2019 was that “AI 
techniques that can optimize the design of complex, large-scale experiments have the potential to 
revolutionize the way experimental nuclear physics is currently done”.


