Al-assisted Design and R&D of
advanced Experimental Systems
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Al for Design

Guo, Kai, et al. Materials Horizons 8.4 (2021

Table 1 Popular ML methods in design of mechanical materials

:1163-1172.

ML method Characteristics

Example applications in mechanical materials design

Linear regression;

Model the linear or polynomial relationship
polynomial regression i

between input and output variables

Support vector machine; Separate high-dimensional data space with
SVR one or a set of hyperplanes

Random forest Construct multiple decision trees for

classification or prediction

Feedforward neural
network (FFNN); MLP

Connect nodes (neurons) with information
flowing in one direction

Capture features at different hierarchical
levels by calculating convolutions; operate
on pixel-based or voxel-based data

Recurrent neural network
(RNN); LSTM; GRU

Connect nodes (neurons) forming a directed
graph with history information stored in
hidden states; operate on sequential data

Generative adversarial
networks (GANs)

Train two opponent neural networks to
generate and discriminate separately until
the two networks reach equilibrium;
generate new data according to the
distribution of training set

Gaussian process
regression (GPR);
Bayesian learning

Treat parameters as random variables and
calculate the probability distribution of
these variables; quantify the uncertainty of
model predictions

Active learning Interacts with a user on the fly for labeling
new data; augment training data with
post-hoc experiments or simulations

Genetic or evolutionary
algorithms

Mimic evolutionary rules for optimizing
objective function

Reinforcement learning Maximize cumulative awards with agents
reacting to the environments.

Graph neural networks Operate on non-Euclidean data structures;
(GNNs) applicable tasks include link prediction,
node i ion and graph ication

Modulus'*? or strength'** prediction

Strength'?* or hardness'?* prediction; structural topology
optimization'**

Modulus™* or toughness**® prediction

Prediction of modulus,”’!!? strength,** toughness'* or i
hardness;” prediction of hyperelastic o plastic behaviors"*>*4*
identification of collision load conditions; "’ design of spinodoid
metamaterials'®*
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Prediction of strain fields' or elastic properties’
high-contrast composites, modulus of unidirectional
composites,'** stress fields in cantilevered structures,'* or yield
strength of additive-manufactured metals;'*' prediction of
fatigue crack propagation in polycrystalline alloys;'*® prediction
of crystal plasticity; *° design of tessellate composites;'*” "
design of stretchable graphene kirigami;'**
structural topology optimization'*®***

Prediction of fracture patterns in crystalline solids;'**
of plastic behaviors in

prediction

144

modeling of porous media'”

Prediction of modulus distribution by solving inverse
elasticity problems;*** prediction of strain or stress fields in
composites;'*? composite design;'®* structural topology

D afio 165167 s jals design®s®

Modulus** or strength'*'** prediction; design of
supercompressible and recoverable metamaterials''®

Strength prediction***

Hardness Predic(ion;u" designs of active
materials; ®*! design of modular metamaterials’®*

Deriving microstructure-based traction-... on laws'”*

Functional space

Desired properties (redox
potential, solubility, toxicity)

Chemical space

(Drug-like, photovoltaics,
polymers, dyes)

It is a relatively new but active area of research.
Many applications in, e.g., industrial material,
molecular and drug design.

Z. Zhou et al., Scientific Reports, vol. 9, n

Direct Inverse

Experiment or
simulation (Schrodinger
equation)

o

High-throughput virtual
screening (e.g., with 3
filtering stages)

1, pp. 1-10, 2019

Inverse

Optimization
evolutionary strategies
generative models (VAE

GAN,RL)

Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.

B. Sanchez-Lengeling, A. Aspuru-Guzik. Science 361.6400 (2018




IExperimentaI Design in NP/HEP

e \When it comes to designing detectors and accelerators with Al this is an area at its “infancy”. What
follows uses “detector” as example but applies to both detector and accelerator.

e Typically full detector design is studied once the subsystem prototypes are ready (phase constraints
from the full detector or outer layers are taken into consideration).

e Need to use advanced simulations which are computationally expensive (Geant).
e Many parameters (and multiple objective functions): curse of dimensionality [1].
e Entails establishing a procedural body of instructions [2].

e The choice of a suitable algorithm is a challenge itself (no free lunch theorem [3]) and always requires
some degree of customization.

Al offers SOTA solutions to solve complex optimization problems in an efficient way

[1] Bellman, Richard. Dynamic programming. Vol. 295. RAND CORP SANTA MONICA CA, 1956.
[2] CF et al. JINST 15.05 (2020): PO5009.
[3] Wolpert, D.H., Macready, W.G., 1997. Trans. Evol. Comp 1, 67-82



Detector
optimization
workflow

Design parameters

Detector
Simulation

AI/ML gathers observations and suggests new design points in an efficient way

(AI/ML can also speed-up the simulation/reconstruction stack; cf. Amdahl’s law)



I Bayesian Optimization

BO is a sequential strategy
developed for global
optimization.

After gathering evaluations
we builds a posterior
distribution used to
construct an acquisition
function.

This cheap function
determines what is next

query point.

Posterior

Acquisition function

t(n) t(n+1)

New
observation

Posterior

w_/—\_e

Next
point

Acquisition function

1. Select a Sample by Optimizing the Acquisition Function.
2. Evaluate the Sample With the Objective Function.

3. Update the Data and, in turn, the Surrogate Function.

4. Go To 1.

http://krasserm.qgithub.io/2018/03/21/bayesian-optimization/
http://krasserm.qithub.io/2018/03/19/gaussian-processes/



http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/19/gaussian-processes/
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https://scitechdaily.com/electron-ion-collider-the-future-of-particle-accelerators-is-here/
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E. Cisbani, A. Del Dotto, CE*, M. Williams et al. JINST 15.05 (2020): P05009 (noise, stats needed etc): - 1 1]
simulation + reconstruction ~ o) * (No)|,
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Spherical Mirror
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aerogel (optimal)

aerogel (4 cm, n(400 nm): 1.02) + 3 mm acrylic filter + gas (1.6 m, n(C,F): 1.0008) < gas (optimal)
. Analysis + Validation 0| - aerogel (legacy)

c + gas (legacy)
@ Define design parametrization and S
@©
parameter description range [units] tolerance [units] ;5;-

R mirror radius [290,300] [cm] 100 [pm)] o 10

®

posr radial position of mirror center [125,140] [cm] 100 [pm]
posl longitudinal position of mirror center | [-305,-295] [cm] 100 [pm]
tiles x shift along x of tiles center [-5,5] [cm] 100 [pm]

[ 500 100
number of obse number of calls

tiles y shift along y of tiles center [-5,5] [cm] 100 [pm]
tiles z shift along z of tiles center [-105,-95] [cm] 100 [um]
Naerogel aerogel refractive index [1.015,1.030] 0.2%
tacrogel aerogel thickness [3.0,6.0] [cm] 1 [mm)]

20
momentum [GeV/c]

pr|n0|pled vs random



https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf
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e The problem becomes challenging when the objectives are of conflict to each other, fL(A) > £1(B) ]

that is, the optimal solution of an objective function is different from that of the B B a

other. o R
e In solving such problems, with or without constraints, they give rise to a trade-off g

optimal solutions, popularly known as Pareto-optimal solutions. £
e Due to the multiplicity in solutions, these problems were proposed to be solved suitably using evolutionary 2

algorithms which use a population approach in its search procedure.

e MO-based solutions are helping to reveal important hidden knowledge about a problem — a matter which is
difficult to achieve otherwise

e During the proposal we used both evolutionary (1) and bayesian approaches (2). | will describe now (1).

) Ratio,, = 1
Ratio,, = 1

The ECCE Inner Tracker Design Optimization considers simultaneously:

momentum resolution
angular resolution
Kalman filter efficiency
(pointing resolution)
Mechanical constraints

New
Baseline

Ratio =



https://en.wikipedia.org/wiki/Vilfredo_Pareto

Elitist Non-Dominated Non-dominated  Crowding

sorting distance

Sorting Genetic SSEEing

Population

@(t+1)

-« Rejected

[1] Deb, K., et al. "A fast and elitist multiobjective
genetic algorithm" IEEE transactions on
evolutionary computation 6.2 (2002): 182-197.

This is one of the most popular approach

(>35k citations on google scholar), characterized by: f The crowding distance d, of point
" . . 2 [ ) iis a measure of the objective
e Use of an elitist principle _ space around i which is not
e  Explicit diversity preserving mechanism i+1 cocuptedbyany °I2§rpi‘:!ﬂf;‘i!2,'n“.
e Emphasis in non-dominated solutions 14 1
| | I
| ) "
The population R, is classified in non-dominated fronts. :_ -‘ i1
Not all fronts can be accommodated in the N slots of available in thenew |~~~ 777 - °
population P, .. We use crowding distance to keep those points in the last
front that contribute to the highest diversity. f



The EIC Detector
Inner Tracker

Ongoing R&D that includes in _'L |
the optimization the support
structure of the inner tracker

|
| Rwell 1| Support Cone e (o)

— Plateau
— Vertex/Sagitta Support
— Conical Support

Parametrization




I Integration during EIC Detector Proposal

Optimization does not mean
necessarily “fine-tuning”

e \We want to use these
algorithms to: (1) steer the
design and suggest
parameters that a
“manual’/brute-force
optimization will likely miss to
identify; (2) further optimize
some particular detector
technology (see d-RICH

paper, e.g., optics properties)

Detector Team
Technology Selection
Baseline Design
Alternative Configurations

Physics Team
Physics Signal Selection
Performance Evaluation

Computing Team
Simulations Campaigns

. Optimization Pipelines

e Al allows to capture hidden

correlations among the
design parameters.

Solutions from Pareto Front
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e All “steps” (physics, detector)

involved in the Al New optimization pipelines
optimization, strong interplay

between working groups



https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta
https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta

Computational Resources

Initialise Design Population

v

Al-assisted design

Evaluate Design Points
Parallelize Evaluations

\

Multi-objective Optimization

Pymoo

Parallelizer / Scheduler
(2 Level Parallelization)

Analyze

(Thread_1)

i Design Point 2
Design Point 3

Design Point 4

% Design Point N

(Thread_2)

description

| symbol

| value

population size
# objectives
offspring
design size
# calls (tot. budget)

# cores

# charged  tracks
#bins in n
# bins in p

100
3
30
11 (9)
200
same as
offspring
120k
S
10

/7)DASK

time taken by GA + sorting

@ Expected Pareto (DTLZ1)
® NSGA-II Pareto (DTLZ1)

L, | —@— NSGA-Il time (DTLZ1)
0. —@— NSGA-Il time (tracker)

b LI I LI I LI I LI I LI I

Used a test problem DTLZ1

Verified scaling following MN? and convergence to
true front

~1s/call with 10* size!

For 11 variables and 3 objectives needs ~ 10000
evaluations to converge

~10k CPUhours / pipeline




I“Navigate” Pareto Front
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“Evolution”

° Black points represent the first
simulation campaign, and a preliminary
detector concept in phase-| optimization
which did not have a developed support
structure;

° Blue points represent the fully
developed simulations for the final
ECCE detector proposal concept; red
points the ongoing R&D for the
optimization of the support structure.

° Compared to black, there is an
improvement in performance in all n bins
with the exception of the transition
region, an artifact that depends on the
fact that black points do not include a
realistic simulation of the material
budget in the transition region.

° In the transition region, it can be also
appreciated the improvement provided
by the projective design

O<hl<1
PWG requirement
—@— T Simulation Campaign
—=@— ECCE Simulation 2021
—=&— ECCE Ongoing R&D

1.5<hi<25
PWG requirement
—@— T Simulation Campaign
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PWG requirement
—=@— T Simulation Campaign
—@— ECCE Simulation 2021
—=&— ECCE Ongoing R&D




Validation

Reconstruction Efficiency

Reconstruction Efficiency
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Performance evaluated after optimization process

(both designs).

Notice red points are related to an ongoing project
R&D with a projective support structure for the

ECCE tracker.

DO invariant mass from semi-inclusive deep
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Software Stack

The team: V. Berdnikov, J. Crafts, E. Cisbani, CF, T. Horn, R. Trotta

Aerogels with low refractive indices are very fragile tiles break during
production and handling, and their installation in detectors.

To improve the mechanical strength of aerogels, Scintilex developed a
reinforcement strategy. The general concept consists of introducing fibers
into the aerogel that increase mechanical strength, but do not affect the
optical properties of the aerogel.

Paper in preparation.
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I ... with larger datasets

Al

gathers observations
and suggests new points
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I Summary

Al can assist the design and R&D of complex experimental systems by providing more efficient design
(considering multiple objectives) and optimizing the computing budget needed to achieve that.

EIC can be one of the first experiments to be designed with the support of Al.
The ECCE consortium is leading these efforts with a multidimensional design and objective spaces.

Additional considerations:

o  None ever accomplished a multi-dimensional / multi-objective optimization of the global design, i.e., made by many
sub-detectors combined together, that can be solved with Al

o  Costs can be explicitly included during the optimization provided a reliable parametrization)

o Anintrinsic overhead regards compute expensive simulations + reconstruction/analysis. This can be speeded up
embedding AlI/ML in the SW stack.

o Larger populations of design points can be simulated to improve accuracy of the Pareto front in multidimensional
spaces with Al-based accelerated optimizations.

Likely future detectors will be designed with the help of Al achieving optimal performance and cost : AI
reduction. One of the conclusions from the DOE Town Halls on Al for Science on 2019 was that “Al

techniques that can optimize the design of complex, large-scale experiments have the potential to \%ﬁﬁ'ﬁﬂfﬁ/ 4

revolutionize the way experimental nuclear physics is currently done”. Ot




