

Modeling Nuclear Physics Data with Novel Artificial Intelligence Approaches

Daniele Dell'Aquila^{1,2}

¹Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Sassari, Italy ²INFN-Laboratori Nazionali del Sud, Catania, Italy

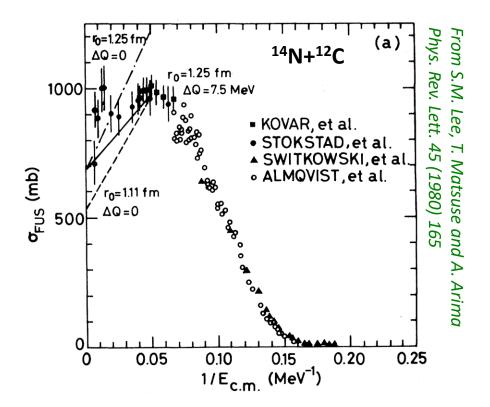
ddellaquila@uniss.it

- Physics background
 - state-of-the-art models;
 - > problems;

Dataset and approach

Nuclear Reaction Video (NRV) Project;

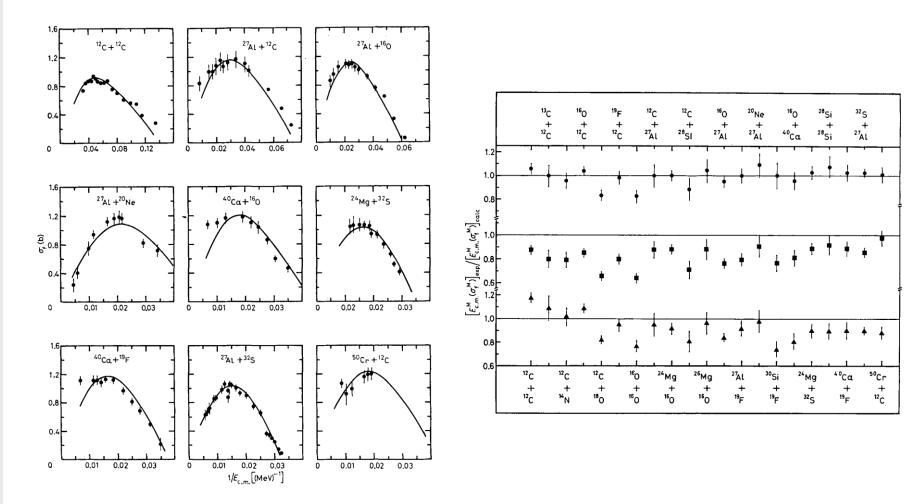
• Methods: Brain Project


- genetic programming: population, crossover, fitness;
- parallel and distributed implementation;
- neural networks;
- data modeling;

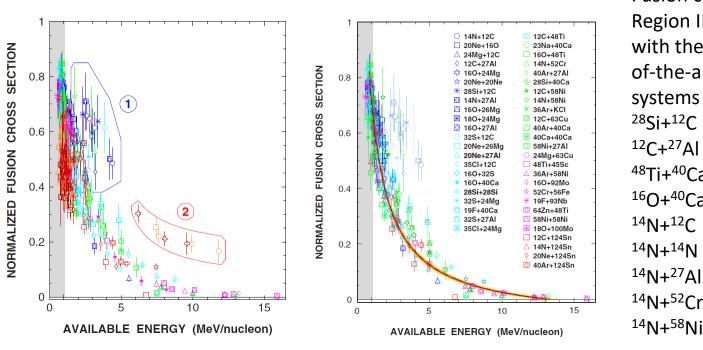
Results

- comparisons with the literature;
- conclusions and perspectives.

Heavy-ion fusion cross section at energies above-barrier


Different, complementary, experimental methods can be effectively used to estimate the yield of evaporation residues (gamma-ray analysis, time-of-flight and magnetic spectrometers, charged particle detection with telescope arrays) \rightarrow heavy-ion fusion cross section from the Coulomb barrier to the onset of multi-fragmentation \rightarrow See e.g. *P. Frobrich, Phys. Rep. 116 (1984) 337*.

Models for the description of fusion cross section between heavy-ions.


- Microscopical approaches: Time-Dependent Hartree Fock (TDHF); Molecular dynamics;
- Macroscopic models: critical distance models, limitation to the compound nucleus model (empirical nuclear potentials from semi-classical considerations);
- **Empirical models**: starting from nuclear reaction theory and then optimizing to the experimental data.

Previous data-driven (phenomenological) approaches, see e.g. Porto F and Sambataro S 1984 Nuov. Cim. 83 339 \rightarrow good description of data around the maxima of the cross section \rightarrow few datasets in Region III (high energies) and Region I (close to the Coulomb barrier).

More recently \rightarrow systematic study of Region III shows discrepancies for some of the systems \rightarrow further investigation on both experiment and theory is required!

from P. Eudes et al., Phys. Rev. C 90 (2014) 034609.

Fusion cross section in Region III \rightarrow disagreement with the prediction of stateof-the-art for some collision systems such as: ²⁸Si+¹²C ¹²C+²⁷Al ⁴⁸Ti+⁴⁰Ca ¹⁶O+⁴⁰Ca ¹⁴N+¹²C ¹⁴N+¹⁴N ¹⁴N+²⁷Al ¹⁴N+⁵²Cr

State-of-the-art artificial intelligence approaches can serve to help describing the cross section between heavy-ions in a broad energy range!

About 50 years of systematics (see e.g. *Nuclear Reactions Video: Karpov A et al., 2017 Nucl. Instrum. Meth. Phys. Res. A 859 112; Zagrebaev V et al.,* 1999 NRV web knowledge base on low-energy nuclear physics URL <u>http://nrv.jinr.ru/</u> for a complete database) \rightarrow Possibility to derive new **data-driven** models for the description of the fusion cross section between heavy-ions in Regions I-III.

		Experimental data on HI fusion cross sections		
Experimental data on fusion	Spe	ecify fusion reaction Z ₁ V A ₁ + Z ₂ V A ₂	Quite recently we started to fil are very far from fi	nish)
elastic scattering evaporation residue	(at least one item) are very far from heise) or choose it from the list V Go			
		Ordered by P-T combination, compound nucleus, time of publication		
		(access to the source may be restricted by owner!)		
	³ He + ⁵⁸ Ni -> ⁶¹ Zn (EvR)	E.F. Aguilera, E. Martinez-Quiroz, R. Chavez-Gonzalez et al.,	Physical Review, C 87 (2013) 14613	
	³ He + ¹⁸⁷ Er -> ¹⁷⁰ Yb (EvR)	S. Gil, R. Vandenbosch, A. Charlop et al.,	Physical Review, C 43 (1991) 701	
	³ He + ¹⁸¹ Ta -> ¹⁸⁴ Re (FF)	F. D. Becchetti, K. H. Hicks, C. A. Fields et al.,	Physical Review, C 28 (1983) 1217	
	³ He + ¹⁹⁷ Au -> ²⁰⁰ TI (FF)	F. D. Becchetti, K. H. Hicks, C. A. Fields et al.,	Physical Review, C 28 (1983) 1217	
	³ He + ²⁰⁰ Bi -> ²¹² At (FF)	F. D. Becchetti, K. H. Hicks, C. A. Fields et al.,	Physical Review, C 28 (1983) 1217	
	³ He + ²³² Th -> ²³⁵ U (FF)	F. D. Becchetti, K. H. Hicks, C. A. Fields et al.,	Physical Review, C 28 (1983) 1217	
	⁴ He + ⁴⁰ Ca -> ⁴⁴ Ti (EvR)	K.A. Eberhard, Ch. Appel, R. Bangert et al.,	Physical Review Letters, 43 (1979) 107	
	⁴ He + ⁴⁴ Ca -> ⁴⁸ Ti (EvR)	K.A. Eberhard, Ch. Appel, R. Bangert et al.,	Physical Review Letters, 43 (1979) 107	
	⁴ He + ⁶³ Cu -> ⁶⁷ Ga (EvR)	A. Navin, V. Tripathi, Y. Blumenfeld et al.,	Physical Review, C 70 (2004) 44601	
	⁴ He + ⁶⁵ Cu -> ⁶⁹ Ga (EvR)	A. Navin, V. Tripathi, Y. Blumenfeld et al.,	Physical Review, C 70 (2004) 44601	
	⁴ He + ⁶⁴ Zn -> ⁶⁸ Ge (X-rays from EC of EvR)	M Fisichella, V Scuderi, A Di Pietro et al.,	Journal of Physics, 282 (2011) 012014	
	⁴ He + ⁶⁴ Zn -> ⁶⁸ Ge (EvR)	V. Scuderi, A. Di Pietro, P. Figuera et al.,	Physical Review, C 84 (2011) 64604	
	⁴ He + ⁶⁴ Zn -> ⁶⁸ Ge (EvR)	A. Di Pietro, P. Figuera, V. Scuderi et al.,	Physics of Atomic Nuclei, 69 (2006) 1366	
	⁴ He + ⁹³ Nb -> ⁹⁷ Tc (EvR)	C. S. Palshetkar, S. Santra, A Chatterjee, K. Ramachandran, Shita		
	⁴ He + ¹⁰⁷ Ag -> ¹¹¹ In (FF)	A. Buttkewitz, H. H. Duhm, F. Goldenbaum et al.,	Physical Review, C 80 (2009) 37603	
	⁴ He + ¹³⁹ La -> ¹⁴³ Pr (FF)	A. Buttkewitz, H. H. Duhm, F. Goldenbaum et al.,	Physical Review, C 80 (2009) 37603	
	⁴ He + ¹⁵⁴ Sm -> ¹⁵⁸ Gd (EvR)	S. Gil, R. Vandenbosch, A. J. Lazzarini et al.,	Physical Review, C 31 (1985) 1752	
	⁴ He + ¹⁶² Dy → ¹⁶⁶ Er (EvR) ⁴ He + ¹⁶⁶ Ho → ¹⁶⁹ Tm (FF)	R. Broda, M. Ishihara, B. Herskind et al.,	Nuclear Physics, A 248 (1975) 356	
	$^{4}\text{He} + {}^{166}\text{Er} \rightarrow {}^{170}\text{Yb} (EVR)$	A. Buttkewitz, H. H. Duhm, F. Goldenbaum et al.,	Physical Review, C 80 (2009) 37603	
		S. Gil, R. Vandenbosch, A. Charlop et al.,	Physical Review, C 43 (1991) 701	
	${}^{4}\text{He} + {}^{188}\text{Os} \rightarrow {}^{192}\text{Pt}$ (EvR) ${}^{4}\text{He} + {}^{192}\text{Os} \rightarrow {}^{196}\text{Pt}$ (EvR)	A. Navin, V. Tripathi, Y. Blumenfeld et al.,	Physical Review, C 70 (2004) 44601	
	⁴ He + ¹⁹⁷ Au -> ²⁰¹ TI (FF)	A. Navin, V. Tripathi, Y. Blumenfeld et al.,	Physical Review, C 70 (2004) 44601	
	⁴ He + ¹⁹⁷ Au -> ²⁰¹ TI (FF)	D. L. Uhl, T. L. McDaniel, J. W. Cobble,	Physical Review, C 4 (1971) 1357	
	⁴ He + ¹⁹⁷ Au -> ²⁰¹ TI (FF)	J. Ralarosy, M. Debeauvais, G. Remy et al., J. Gindler, H. Munzel, J. Buschmann et al.,	Physical Review, C 8 (1973) 2372 Nuclear Division A 445 (1970) 237	
	4 He + 197 Au $\rightarrow ^{201}$ TI (EvR)	H. E. Kurz, E. W. Jasper, K. Fischer et al.,	Nuclear Physics, A 145 (1970) 337 Nuclear Physics, A 168 (1971) 129	
	⁴ He + ¹⁹⁷ Au -> ²⁰¹ TI (FF)	A. Buttkewitz, H. H. Duhm, F. Goldenbaum et al.,		
	⁴ He + ¹⁹⁷ Au -> ²⁰¹ TI (FF)	J.R. Huizenga, R. Chaudhry, R. Vandenbosch,	Physical Review, C 80 (2009) 37603	
	⁴ He + ²⁰³ Tl -> ²⁰⁷ Bi (FF)	J.R. Huizenga, R. Chaudhry, R. Vandenbosch, J.R. Huizenga, R. Chaudhry, R. Vandenbosch,	Physical Review, 126 (1962) 210 Physical Review, 126 (1962) 210	
	⁴ He + ²⁰⁵ Tl -> ²⁰⁹ Bi (FF)	J.R. Huizenga, R. Chaudhry, R. Vandenbosch, J.R. Huizenga, R. Chaudhry, R. Vandenbosch,	Physical Review, 126 (1962) 210 Physical Review, 126 (1962) 210	
	⁴ He + ²⁰⁸ Pb -> ²¹⁰ Po (FF)	J.R. Huizenga, R. Chaudhry, R. Vandenbosch,	Physical Review, 126 (1962) 210 Physical Review, 126 (1962) 210	
	⁴ He + ²⁰⁷ Pb -> ²¹¹ Po (FF)	J. Ralarosy, M. Debeauvais, G. Remy et al.,	Physical Review, C 8 (1973) 2372	
	4 He + 208 Pb \rightarrow 212 Po (alpha-decay of EvR)	S.M. Lukyanov, Yu.E. Penionzhkevich, R.A. Astabatian et al.,	Physics Letters, B 670 (2009) 321	
	⁴ He + ²⁰⁹ Bi -> ²¹³ At (FF)	W. G. Meyer, V. E. Viola, Jr., R. G. Clark et al.,	Physical Review, C 20 (1979) 1716	
	4 He + 209 Bi \rightarrow 213 At (FF)	D. L. Uhl, T. L. McDaniel, J. W. Cobble,	Physical Review, C 4 (1971) 1357	
	⁴ He + ²⁰⁹ Bi -> ²¹³ At (FF)	J. Ralarosy, M. Debeauvais, G. Remy et al.,	Physical Review, C 8 (1973) 2372	
	4 He + 209 Bi $\rightarrow ^{213}$ At (FF)	Yu.E. Penionzhkevich, Yu.A. Muzychka, S.M. Lukyanov et al.,	European Physical Journal, A 13 (2002) 123	
	4 He + 209 Bi $\rightarrow ^{213}$ At (FF)	A.S. Fomichev, I. David, Z. Dlouhy et al.,	Zeitschrift fur Physik, 351 (1995) 129	
	4 He + 209 Bi $\rightarrow ^{213}$ At (FF)	J. Gindler, H. Munzel, J. Buschmann et al.,	Nuclear Physics, A 145 (1970) 337	
	4 He + 209 Bi $\rightarrow ^{213}$ At (FF)	J.R. Huizenga, R. Chaudhry, R. Vandenbosch,	Physical Review, 126 (1962) 210	
	⁴ He + ²³² Th -> ²³⁰ U (FF)	J. Ralarosy, M. Debeauvais, G. Remy et al.,	Physical Review, C 8 (1973) 2372	
	⁴ He + ²³³ U -> ²³⁷ Pu (FF)	W. G. Meyer, V. E. Viola, Jr., R. G. Clark et al.,	Physical Review, C 20 (1979) 1716	
	⁴ He + ²³³ U -> ²³⁷ Pu (FF)	H. Freiesleben, J. R. Huizenga,	Nuclear Physics, A 224 (1974) 503	
	4us, 233u - 237pu (EE)	L Ciadas M Musel I Buschmann at al	Number Division & 445 (4070) 227	

Approach: *supervised learning* using *symbolic regression* algorithms.

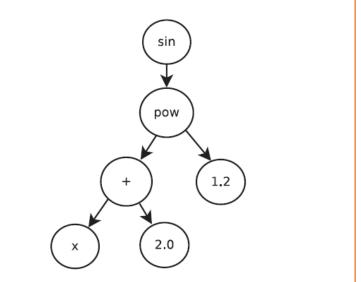
Novelties:

- Deriving mathematical expressions to describe the data → support to theories and models attempting to predict the fusion cross section between heavy-ions;
- Comprehensive analysis of large amount of nuclear data → universal model for the description of the entire dataset;
- Advanced feature selection → allows to inspect the dependence on several variables (including nuclear structure variables).

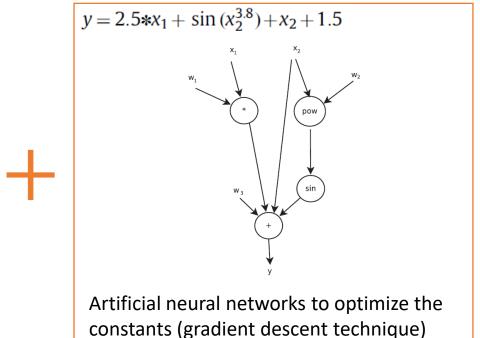
Major challenges:

- The amplitude of the cross section varies even by several orders of magnitude with the energy;
- Experimental errors associated to each individual data point differ by several orders of magnitude for each data point;
- Resulting models must have physical boundaries and extrapolation capabilities.

Dataset used for model derivation \rightarrow about 4500 experimental data points.

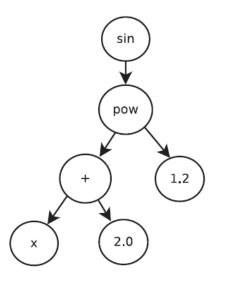

- Learning dataset: $Z_p Z_t < 250 \rightarrow$ light-to-medium mass nuclei.
- Testing dataset 1: $Z_p Z_t \ge 250 \rightarrow$ heavy systems (test the extrapolation towards heavy systems).
- Testing dataset 2: $Z_p Z_t < 250 \rightarrow$ some of the lighter systems.

Symbol	Description		
$\frac{1}{E_{cm}}$	inverse of the collision center-of-mass energy (MeV)		
Z_1	charge of the projectile		
Z_2	charge of the target		
A_1	mass of the projectile		
A_2	mass of the target		
J_1	spin of the projectile		
J_2	spin of the target		
π_1	parity of the projectile (1 for positive parity, -1 for negative parity)		
π_2	parity of the target (1 for positive parity, -1 for negative parity)		
μ_1	magnetic dipole momentum of the projectile (μ_N)		
μ_2	magnetic dipole momentum of the target (μ_N)		
$\langle r^2 \rangle_1$	rms charge radius of the projectile (fm)		
$\langle r^2 \rangle_2$	rms charge radius of the target (fm)		
Q-value	fusion Q -value (MeV)		
S_{α}	α separation energy of the compound nucleus (MeV)		
$S_{\alpha 1}$	α separation energy of the projectile		
$S_{\alpha 2}$	α separation energy of the target		
S_{n1}	one-neutron separation energy of the projectile		
S_{n2}	one-neutron separation energy of the target		
S_{p_1}	one-proton separation energy of the projectile		
S_{p_2}	one-neutron separation energy of the target		
S_{2n1}	two-neutron separation energy of the projectile		
S_{2n2}	two-neutron separation energy of the target		
S_{2p_2}	two-proton separation energy of the projectile		
S_{2p_2}	two-neutron separation energy of the target		


Brain Project – a neural-genetic tool for the formal modeling of data

Exploits a novel hybridization of genetic programming and artificial neural network \rightarrow the task is that of symbolic regression. Genetic part \rightarrow foresees the evolution of tree-like structures representing mathematical expressions \rightarrow deals with the global search for the maximum of a suitable fitness function; Neural part \rightarrow deals with the local search for the minimum of the error when the genetic part has identified a good maximum of the fitness function. Russo M 2016 Swarm Evo. Comput. **27** 145

Russo M 2020 Soft Comput. 24 16885–16894



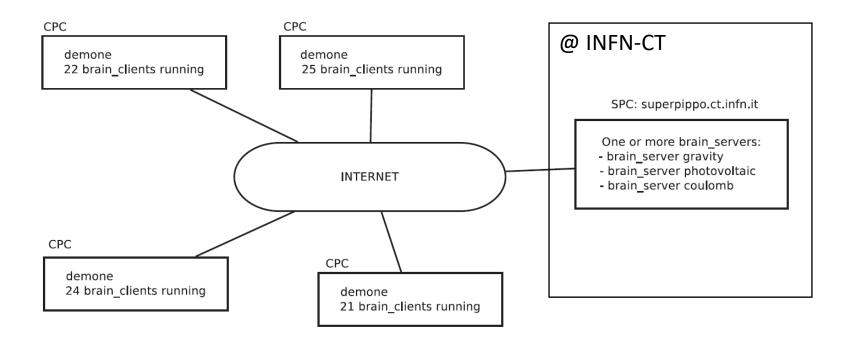
Genetic evolution of tree-like structures representing mathematical expressions

Brain Project: genetic part uses genetic \rightarrow a programming technique that exploits concepts derived from the natural selection (Darwinian Theory of Evolution) to solve optimization problems.

See e.g. John R. Koza, Genetic Programming – On the Programming of Computers by Means of Natural Selection, A Bradford Book – The MIT Press (Cambridge, Massachussets; London, England)

INFN-LNS

X

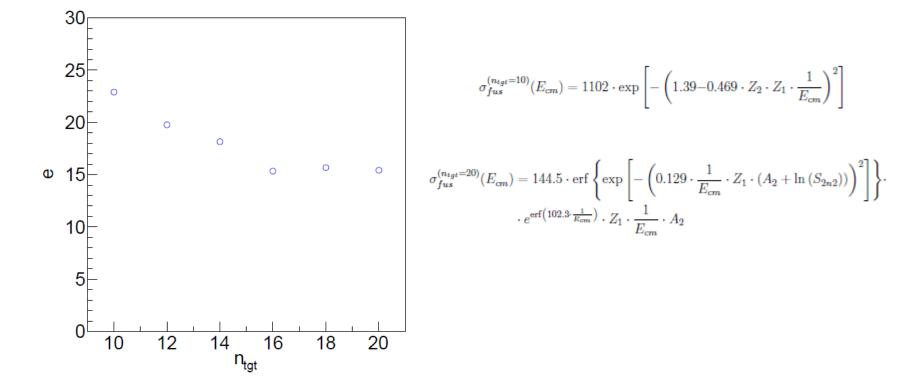

Sassari

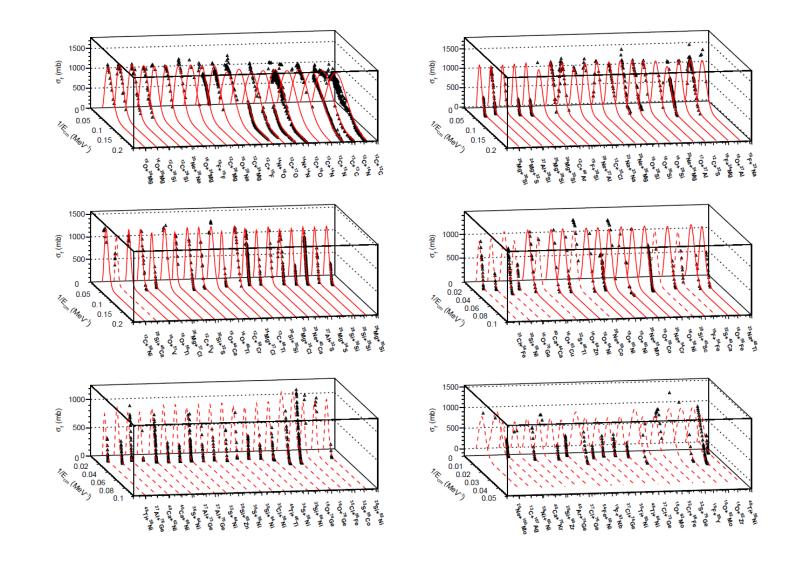
Università degli Studi di

- 1. Generate an initial population of random trees representing possible solutions to the SR problem being studied;
- 2. Evaluate each possible solution and assign it a fitness value f_{fit} ;
- 3. Create a new population of trees starting from the previous population using some evolutionary operators, e.g. copy, crossover, mutation, selection and heuristic operators;
- 4. Return to step two until the termination criterion is met.

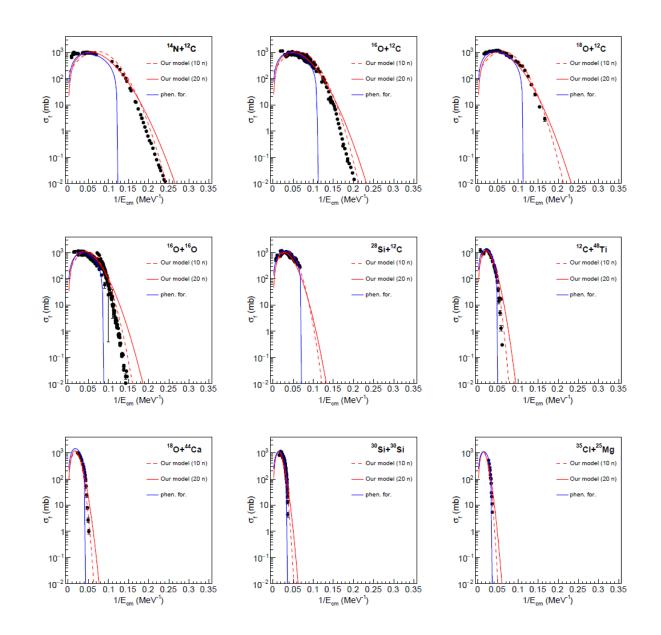
Key «ingredients»:

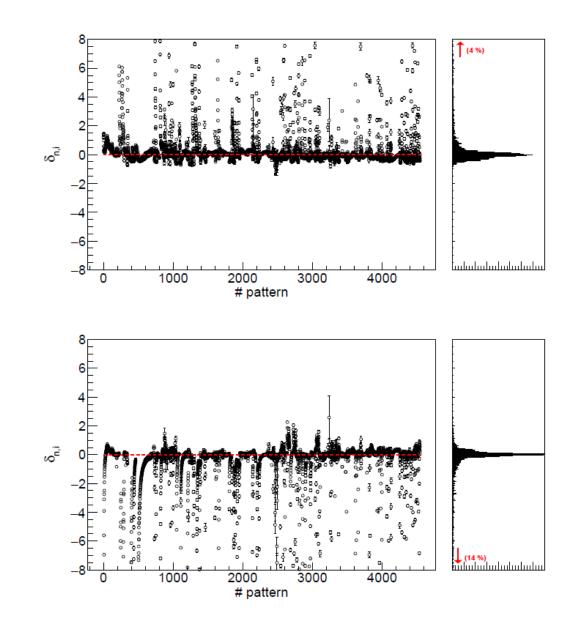
- crossover;
- fitness;
- mutation;
- populations/migration.

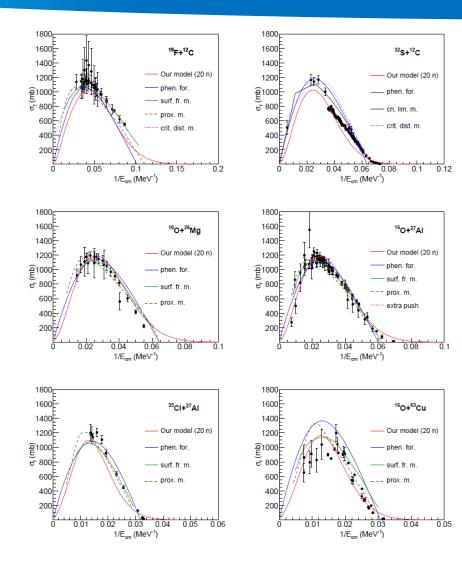

from Russo M 2016 Swarm Evo. Comput. 27 145


Università degli Studi di Sassari & INFN-LNS

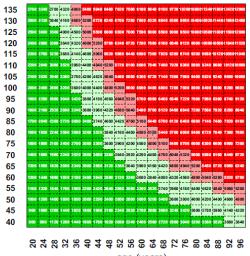
Fitness function \rightarrow is the function to maximize \rightarrow it suitably contains the prediction error and a term related to the complexity of the model and/or feature costs.


to tune the desired trade-off
between accuracy and
complexity
$$f_{\rm fit} = 100.0 * \frac{f_e u(f_e) + \alpha f_n u(f_n)}{1 + \alpha} e^{f_e(1 - u(f_e))} e^{f_n(1 - u(f_n))}$$
$$f_e = \frac{e_{\rm max} - e}{e_{\rm max}} \qquad \text{related to the accuracy of the} \\ e = 100 \sqrt{\sum_{o=1}^{N_o} \sum_{p=1}^{N_p} \frac{\left(w_pat_p w_out_o(y_{op}^d - y_{op}^c)\right)^2}{N_o N p_{eq}}}$$
$$f_n = \frac{n_{\rm max} - n}{n_{\rm max} - 1} \qquad \text{related to the complexity of the} \\ \text{model}$$

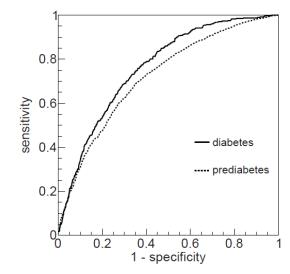

 $f_{fit} = f_{fit} \cdot e^{\frac{n_{tgt} - n}{n_{tgt}}}$ \rightarrow required to reach a predefined, target, number of nodes. Brain Project usually tries to optimize the error with a given number of nodes \rightarrow interesting to more easily tune the complexity of the desired model.



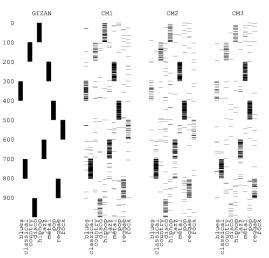
Università degli Studi di Sassari & INFN-LNS



Daniele Dell'Aquila, Brunilde Gnoffo, Ivano Lombardo, Francesco Porto, Marco Russo, Modeling Heavy-Ion Fusion Cross Section Data via a Novel Artificial Intelligence Approach, arXiv:2203.10367, https://doi.org/10.48550/arXiv.2203.10367 **INFN-LNS** 2 Sassari di Studi degli Jniversità


waist circumference (cm)

E. Buccheri, D. Dell'Aquila and M. Russo Artificial intelligence in health data analysis: The Darwinian evolution theory suggests an extremely simple and zero-cost large-scale screening tool for prediabetes and type 2 diabetes, Diabetes Research and Clinical Practice **174** (2021) 108722.



age (years)

E. Buccheri, D. Dell'Aquila and M. Russo Stratified analysis of the age-related waist circumference cut-off model for the screening of dysglycemia at zero-cost, Obesity Medicine **31** (2022) 100398.

G. Campobello, D. Dell'Aquila and M. Russo, A. Segreto, *Neuro-genetic programming for multigenre classification of music content*, Applied Soft Computing **94** (2020) 106488.

- Numerous datasets are curretly available in nuclear physics, taking advantage of several decades of sophisticated experimental investigations;
- NRV has collected fusion cross section data between heavy-ions → their overall description is still not completely understood by state-of-the-art models;
- Artificial intelligence techniques based on symbolic regression (which exploit genetic programming and artificial neural networks) can serve to effectively model even particularly complex datasets;
- Analytical formulation of the models → useful to spot funcitonal dependencies that can be exploited by theoretical models;
- Advanced feature selection → can serve to guide theoretical models towards the discovery of the dependence on key nuclear physics parameters;
- Many more datasets are yet to be modeled!